STATUS of $\bar{K}N$ **and** $\bar{K}NN$ **INTERACTIONS**

Wolfram Weise Technische Universität München

KEYWORDS:

- **LOW**-**ENERGY QCD** with **STRANGE QUARKS** realized as an **EFFECTIVE FIELD THEORY**: **SU**(**3**) octet of pseudoscalar Nambu-Goldstone bosons coupled to the baryon octet
- **Update on** $\bar{K}N$ **and** $\bar{K}NN$ **interactions** Scattering lengths, quasibound states, two-poles scenario, . . .

BASIC ISSUES

- Testing ground: high-precision **antikaon**-**nucleon** threshold physics **Strange quarks** are intermediate between "**light**" and "**heavy**": interplay between **spontaneous** and **explicit chiral symmetry breaking** in low-energy QCD
	- ² strongly **attractive** low-energy $\bar{K}N$ interaction
- Nature and structure of $\Lambda(1405)$ $(B = 1, S = -1, J^P = 1/2^-)$
-

three-quark valence structure vs. "**molecular**" meson-baryon system ?

- Quest for quasi-bound **antikaon**-**nuclear** systems ?
- Role of **strangeness** in dense baryonic matter ?
	- new constraints from **neutron stars**

LOW-ENERGY $\bar{K}N-\pi Y$ SYSTEMS

Poles and **thresholds**:

 $\Lambda(1405)$ resonance 27 MeV below threshold:

chiral perturbation theory **NOT** applicable

Strategy:

Non-**perturbative Coupled**-**Channels Dynamics** based on **Chiral SU**(**3**) **Effective Lagrangian**

CHIRAL SU(**3**) **DYNAMICS** with **COUPLED CHANNELS**

$$
\mathbf{T}_{ij}(p',p,\sqrt{s}) = \mathbf{K}_{ij}(p',p,\sqrt{s}) + \sum_{n} \int \frac{d^4q}{(2\pi)^4} \mathbf{K}_{in}(p',q,\sqrt{s}) \mathbf{G}_n(q,\sqrt{s}) \mathbf{T}_{nj}(q,p,\sqrt{s})
$$

Kernel \mathbf{K}_{ij} from **CHIRAL SU**(**3**) EFFECTIVE MESON-BARYON LAGRANGIAN

 uc c

Technische Universität München

u, d s 1 GeV 5 C **CHIRAL SU**(**3**) **COUPLED CHANNELS DYNAMICS**

$$
T_{ij} = K_{ij} + \sum_{n} K_{in} G_{n} T_{nj}
$$
\n1

\n1

\n1

\n2

\nNote: **ENERGY DEPENDENCE** characteristic of Nambu-Goldstone Bosons

\n
$$
|1\rangle = |\bar{K}N, I = 0\rangle
$$
\n
$$
K_{\cdot,\cdot,\cdot}
$$
\n
$$
K_{11} = \frac{3}{2f_K^2} (\sqrt{s} - M_K)
$$
\n
$$
K_{12} = \frac{3}{2f_K^2} (\sqrt{s} - M_K)
$$
\n
$$
K_{22} = \frac{2}{f_{\pi}^2} (\sqrt{s} - M_{\Sigma})^{\text{GeV}}
$$
\n1

\n1

\n1

\n2

\n2

\n3

\n4

\n5

\n6

\n7

\n7

\n8

\n8

\n9

\n10

\n
$$
\pi \cdot \frac{S}{\sqrt{N}}
$$
\n
$$
K_{22} = \frac{2}{f_{\pi}^2} (\sqrt{s} - M_{\Sigma})^{\text{GeV}}
$$
\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n
$$
\pi \cdot \frac{S}{\sqrt{N}}
$$
\n
$$
K_{22} = \frac{2}{f_{\pi}^2} (\sqrt{s} - M_{\Sigma})^{\text{GeV}}
$$
\n10

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n
$$
\pi \cdot \frac{S}{\sqrt{N}}
$$
\n
$$
K_{22} = \frac{2}{f_{\pi}^2} (\sqrt{s} - M_{\Sigma})^{\text{SC}}
$$
\n10

\n11

\n12

\n13

\n14

\n15

\n

K N AMPLITUDES - past and present \overline{a}

CHIRAL SU(**3**) **EFFECTIVE FIELD THEORY** with **COUPLED CHANNELS**

leading order (Tomozawa - Weinberg) terms

Technische Universität München

Technische Universität München

The TWO POLES **The TWO POLES scenario**

D. Jido et al., Nucl. Phys. A723 (2003) 205 T. Hyodo, W.W.: Phys. Rev. C 77 (2008) 03524

T. Hyodo, D. Jido : Prog. Part. Nucl. Phys. 67 (2012) 55

TЩ

Technische Universität München

The TWO POLES scenario

D. Jido et al. Nucl. Phys. A725 (2003) 181

T. Hyodo, W.W., Phys. Rev. C77 (2008) 03524

 $F_{\rm eff}$ $F_{\rm eff}$ \sim 2 μ \sim 2 μ and $F_{\rm eff}$ and $F_{\rm eff}$ and $F_{\rm eff}$ are shown as shown as shown as shown as shown as μ T. Hyodo, W.W.: Phys. Rev. C77 (2008) 03524

- solid \mathbf{N} and \mathbf{N} is an and imaginary particles shown are related to the Tij \mathbf{N} ► Note differen **Note difference** in spectral maxima of $\bar{K}N$ and $\pi\Sigma$ D. Jido et al. , NP A725 (2003) 263
	-
- quasibound state at **1420** MeV (not 1405 MeV) meson-baryon interaction is governed by the chiral low energy theorem. Hence, we Equivalent $\bar{K}N$ **effective interaction** should produce quasibound state at **1420** MeV (**not** 1405 MeV)

CHIRAL SU(**3**) **COUPLED CHANNELS DYNAMICS**: T chinal su (3) coupled chairies Then the covariant derivatives for the covariant derivatives for the octet baryon fields can be defined as a b
The octet baryon fields can be defined as a baryon field as a baryon field as a baryon field as a baryon field

- NLO hierarchy of driving terms - $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{\Large{0}}\\ \text{\Large{0}}\end{array} \end{array} \end{array}$

 $\sum_{i=1}^{n}$

The power counting rule for baryon fields is given by

leading order (**W**einberg-**T**omozawa) terms With these counting rules, we can construct the most general effective Lagrangian for meson-baryon B, ^B¯ : ^O(1), uµ, ^Γµ, (iD/ [−] ^M0)^B : ^O(p), ^χ[±] : ^O(p²). **input**: physical pion and kaon decay constants

∞

 $\overline{}$

 \Box input: axial vector constants
 \Box D and F from hyperon beta decays direct and crossed **Born terms input**: axial vector constants we have n=1 D and F from hyperon beta decays and the chiral order of B is the lowest order O(p), In the

$$
g_A = D + F = 1.26
$$

$$
\mathcal{L}_1^{MB} = \text{Tr}\left(\frac{D}{2}(\bar{B}\gamma^{\mu}\gamma_5\{u_{\mu}, B\}) + \frac{F}{2}(\bar{B}\gamma^{\mu}\gamma_5[u_{\mu}, B])\right)
$$

 $\sum_{i=1}^{n}$ $\binom{n}{k}$ next-to-leading order (NLO) $\binom{n}{k}$ ⁴In this paper we utilize chiral perturbation theory for the meson-baryon scattering amplitude up to ^O(p²) where no $\left(\frac{1}{2}\right)$ next-to-leading order (NLO) $O(n^2)$

 $\mathcal{O}(p^2)$ in Mi and Ei are the momentum in channel in $\left(\begin{array}{c}\text{new to learning order (11--9)} \\ \text{input: 7 s-wave low-energy constants}\end{array}\right)$

the two-component Pauli spinor for the baryon in channel i. Applying the s-wave projection (11), we have projection (11), $\mathcal{O}(p^2)$ Lagrangians [96, 97, 98], the relevant terms to the meson-baryon scattering are

 $\mathcal{L}^{MB}_2 = \! b_D \text{Tr}\big(\bar{B}\{\chi_+,B\}\big) + b_F \text{Tr}\big(\bar{B}[\chi_+,B]\big) + b_0 \text{Tr}(\bar{B}B) \text{Tr}(\chi_+)$ $+$ $+ d_3 \text{Tr} (\bar{B} u_\mu) \text{Tr} (u$ $\text{Tr}(u^{\mu}B) + d_4 \text{Tr}(BB)\text{Tr}($ $\left[\frac{u_{\mu}, D_{\mu}}{u^{\mu}u}\right]$ vertex. + d₃Tr($\bar{B}u_\mu$)Tr($u^\mu B$) + d₄Tr($\bar{B}B$)Tr($u^\mu u_\mu$), \mathcal{L}^{d} \widehat{A}_{3} + d₃^T + d₁Tr(\bar{B} { u^{μ} , [u_{μ} , B]}) + d₂Tr($\bar{B}[u^{\mu}$, [u_{μ} , B]])

introduced.

CHIRAL SU(**3**) **COUPLED CHANNELS DYNAMICS**

$$
\mathbf{T}_{ij} = \sum_{\mathbf{T}_{ij}} \mathbf{K}_{ij} + \sum_{\mathbf{K}_{ij}} \mathbf{G}_n \mathbf{F}_{nj} + \sum_{\mathbf{T}_{nj}} \mathbf{K}_{in} \mathbf{F}_{nj}
$$

channels: K[−]p, K⁰n, π⁰Σ⁰, π⁺Σ[−], π[−]Σ⁺, π⁰Λ, ηΛ, ηΣ⁰, K⁺Ξ[−], K[−]Ξ⁰

loop integrals (with meson-baryon Green functions) using dimensional regularization:

$$
\tilde{G}(q^2) = \int \frac{d^d p}{(2\pi)^d} \frac{i}{[(q-p)^2 - M_B^2 + i\epsilon][p^2 - m_\phi^2 + i\epsilon]}
$$

finite parts including **subtraction constants** $a(\mu)$:

$$
G(q^{2}) = a(\mu) + \frac{1}{32\pi^{2}q^{2}} \left\{ q^{2} \left[\ln \left(\frac{m_{\phi}^{2}}{\mu^{2}} \right) + \ln \left(\frac{M_{B}^{2}}{\mu^{2}} \right) - 2 \right] + (m_{\phi}^{2} - M_{B}^{2}) \ln \left(\frac{m_{\phi}^{2}}{M_{B}^{2}} \right) - 8\sqrt{q^{2}} |\mathbf{q}_{cm}| \,\arctan \left(\frac{2\sqrt{q^{2}} |\mathbf{q}_{cm}|}{(m_{\phi} + M_{B})^{2} - q^{2}} \right) \right\}
$$

UPDATED ANALYSIS of K−p **THRESHOLD PHYSICS**

Y. Ikeda, T. Hyodo, W.W. Physics Letters B 706 (2011) 63 Nucl. Phys. A 881 (2012) 98

Chiral SU(3) coupled-channels dynamics **Tomozawa**-**Weinberg** + **Born** terms + **NLO**

best fit achieved with $\chi^2/d.o.f. \simeq 0.9$

UPDATED ANALYSIS of K[−]p THRESHOLD PHYSICS with SIDDHARTA constraints

3 πΛ −16.569 Y. Ikeda, T. Hyodo, W.W. Physics Letters B 706 (2011) 63

Non-trivial result: best NLO fit prefers **physical** values of **decay constants**: \cdot NI \cap fit prefers **physical** values of $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$

$$
(f_{\pi} = 92.4 \; MeV)
$$

Tomozawa-Weinberg terms **dominant** b^F (GeV−¹) 0.040119

Born terms **significant**

Figure 1: Feynman diagrams for the meson-baryon interactions in the meson-baryon interactions in chiral perturbation of the meson-baryon interactions in chiral perturbation theory. The chiral perturbation theory. The chira

NLO parameters are non-negligible but **small** \rightarrow \overrightarrow{C} weinberg-Tomozawa interaction, \overrightarrow{C}

Technische Universität Münch

the two-component Pauli spinor for the baryon in channel i. Applying the s-wave projection (11), we

UPDATED ANALYSIS of K−p **THRESHOLD PHYSICS with SIDDHARTA constraints** (contd.)

Consistent $LO \rightarrow NLO$ hierarchy

	TW	TWB	NLO
ΔE [eV]	373	377	306
Γ [eV]	495	514	591
γ	2.36	2.36	2.37
R_n	0.20	0.19	0.19
R_c	0.66	0.66	0.66
pole positions	$1422 - 16i$	$1421 - 17i$	$1424 - 26i$
[MeV]	$1384 - 90i$	$1385 - 105i$	$1381 - 81i$

Table 3: Results of the systematic χ^2 analysis using leading order (TW) plus Born terms (TWB) and full NLO schemes. Shown are the energy shift and width of the 1s state of kaonic hydrogen (ΔE and Γ), threshold branching ratios (γ , R_n and R_c), and the pole positions of the isospin $I = 0$ amplitude in the $\bar{K}N$ ^{-π}Σ domain.

Y. Ikeda, T. Hyodo, W.W. i_{phucies} of the Born terms, but the substants of the substantial constants of the ker (TW) and F1 is F2 and the theoretical point of the the $v_{\text{subtrace}}^{(1) \text{W}}$ Nucl. Phys. A 881 (2012) 98 Physics Letters B 706 (2011) 63

Table 2: Parameters resulting from the systematic χ^2 analysis, using leading order (TW) plus Born terms (TWB) and full NLO schemes. Shown are the isospin symmetric subtraction constants $a_i(\mu)$ at $\mu = 1$ GeV, the meson decay constants f_K and f_η , the renormalized NLO constants \bar{b}_i and d_i , and $\chi^2/\text{d.o.f.}$ of the fit.

K−p **SCATTERING AMPLITUDE**

$$
f({\bf K}^-{\bf p})=\frac{1}{2}\big[f_{\bar{{\bf K}}{\bf N}}({\bf I}={\bf 0})+f_{\bar{{\bf K}}{\bf N}}({\bf I}={\bf 1})\big]
$$

threshold region and subthreshold extrapolation:

 ${\bf \Lambda}(1405)$: $\bar{\bf K}{\bf N}$ $({\bf I} = {\bf 0})$ quasibound state embedded in the $\pi\bf{\Sigma}$ continuum

Technische Universität Müncher

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS The relatively large jump in Re *a*(*K*−*n*) when passing from "TW" and "TWB"

Predicted antikaon-neutron amplitudes at and below threshold change in Re *a*(*K*−*p*). Thus, to determine the *I* = 1 component of the *KN*¯

Needed:

accurate constraints from antikaon-deuteron threshold measurements

UPDATED ANALYSIS of K−p **LOW-ENERGY CROSS SECTIONS**

Technische Universität München

UPDATED ANALYSIS of K−p **LOW-ENERGY CROSS SECTIONS**

Resonance TWO POLES scenario

Pole positions from chiral SU(3) coupled-channels calculation with SIDDHARTA threshold constraints:

Y. Ikeda, T. Hyodo, W. W. : Nucl. Phys. A 881 (2012) 98

Implications & **Comments**

- K^-p scattering length more accurately determined than K^-n (SIDDHARTA constraints)
- **O** Uncertainties in KN $(I = 1)$ interaction primarily from large uncertainties in the $\mathbf{K}^+\mathbf{p}\to\pi^0\mathbf{\Lambda}$ channel
- **Kaonic deuterium** measurements important for providing further constraints on K^-n interaction
- absorption into non-mesonic hyperon-nucleon final states $B = 2$ systems - key issue: $KNN \rightarrow YN$

ALTERNATIVE OPTIONS ?

Reproducing **kaonic hydrogen** and **low**-**energy scattering** data does not give **unique** answer - **subthreshold** constraints important

ALTERNATIVE OPTIONS ?

Reproducing **kaonic hydrogen** and **low**-**energy scattering** data does not give **unique** answer - **subthreshold** constraints important

ANTIKAON - **DEUTERON THRESHOLD PHYSICS** $\overline{1}$ $\overline{1}$ 8 −0.9005 × 103 × 103 × 104 × 9 1.661 × 103 (11) × 104 × 104 × 104 × 104 × 104 × 104 × 104 × 104 × 104 × 104 × 104 × 104 × 104 × 104 × 104 ×

. . . looking forward to **SIDDHARTA 2**

Strategies: Multiple scattering (MS) theory vs. three-body (Faddeev) calculations with Chiral SU(3) Coupled Channels input A
gi

MS approach (fixed scatterer approximation): K[−]d **scattering length** 0.2 \blacksquare

Using IHW input scattering lengths constrained by SIDDHARTA kaonic hydrogen: \mathcal{E} In TVV imput static mightly religious constrained by SIDL

(2012) preliminary

Technische Universität Münche

ANTIKAON - **DEUTERON SCATTERING LENGTH**

Recent calculations using SIDDHARTA - constrained input \bullet

 \blacktriangleright Primary theoretical uncertainties from \mathbf{K}^- n amplitude

Predicted energy **shift** and width of kaonic deuterium (Faddeev calculation): $\mathcal{O}_{\mathcal{F}}$ is the combined errors of the combined errors of the combined errors of the combined errors of these two states \mathcal{F}

$$
\Delta E_{1s} = -794\ eV \qquad \Gamma_{1s}(K^- d) = 1012\ eV
$$

 \overline{a} in summary, we have realized the predictions for the predictions for the predictions for the kaon-deuteron for the kaon-deut s in view included: $\mathbf{r} \cdot \mathbf{d} \rightarrow \mathbf{r}$ in absorption Not included: $\mathbf{K}^+\mathbf{d} \to \mathbf{YN}$ absorption

DHARTA. Based on consistent solutions for input values of the K[−]p scatter-

UPDATE on QUASIBOUND K pp

3-**Body** (**Faddeev**) **calculations Variational calculations**

- . . . now consistently using amplitudes from **Chiral SU**(**3**) **coupled**-**channels** dynamics including **energy dependence** in subthreshold extrapolations
	- Calculated **binding energy** and width (in MeV) of the K[−]pp system

- $\lfloor 1 \rfloor$ Variational (hyperspherical harmonics): N. Barnea, A. Gal, E.Z. Livets ; Phys. Lett. B 712 (2012) 132
- 1. N. Barnea, A. Barnea, $\bm{[2]}$ Variational (Gaussian trial wave functions): A. Doté, T. Hyodo, W.W.; Phys. Rev. C 79 (2009) 014003

3. Y. Ikeda, H. Kamano, T. Sato, PTP 124 (2010) 533

 2.11% 76.9 P. T. Hyodo, NPA 804 (2010) 197, PRC 797, P $|3|$ Faddeev: Y. Ikeda, H. Kamano, T. Sato; Prog. Theor. Phys. 124 (2010) 533

