STATUS of $\bar{\mathrm{K}}\mathrm{N}$ and $\bar{\mathrm{K}}\mathrm{N}\mathrm{N}$ INTERACTIONS

Wolfram Weise Technische Universität München

KEYWORDS:

- LOW-ENERGY QCD with STRANGE QUARKS realized as an EFFECTIVE FIELD THEORY:
 SU(3) octet of pseudoscalar Nambu-Goldstone bosons coupled to the baryon octet
- Update on K̄N and K̄NN interactions Scattering lengths, quasibound states, two-poles scenario, ...

BASIC ISSUES

- Strange quarks are intermediate between "light" and "heavy":
 interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD
 Testing ground: high-precision antikaon-nucleon threshold physics
 - hicksim strongly **attractive** low-energy $ar{\mathrm{K}}\mathrm{N}$ interaction
- Nature and structure of $\Lambda(1405)~({f B}=1,~{f S}=-1,~{f J}^{f P}=1/2^-)$

three-quark valence structure vs. "molecular" meson-baryon system ?

- Quest for quasi-bound antikaon-nuclear systems ?
- Role of strangeness in dense baryonic matter ?
 - > new constraints from **neutron stars**

LOW-ENERGY $\overline{KN} - \pi Y$ systems

Poles and **thresholds**:

 $\Lambda(1405)$ resonance 27 MeV below threshold:

chiral perturbation theory **NOT** applicable

Strategy:

Non-perturbative Coupled-Channels Dynamics based on Chiral SU(3) Effective Lagrangian

CHIRAL SU(3) DYNAMICS with COUPLED CHANNELS

$$\mathbf{T}_{ij}(p',p,\sqrt{s}) = \mathbf{K}_{ij}(p',p,\sqrt{s}) + \sum_{n} \int \frac{d^4q}{(2\pi)^4} \, \mathbf{K}_{in}(p',q,\sqrt{s}) \, \mathbf{G}_n(q,\sqrt{s}) \, \mathbf{T}_{nj}(q,p,\sqrt{s})$$

Kernel \mathbf{K}_{ij} from CHIRAL SU(3) EFFECTIVE MESON-BARYON LAGRANGIAN

u,d S

I Gev S C

Technische Universität München

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

$$T_{ij} = K_{ij} + \sum_{n} K_{in} G_n T_{nj}$$
• Leading s-wave I = 0 meson-baryon interactions (Tomozawa-Weinberg)
Note: ENERGY DEPENDENCE characteristic of Nambu-Goldstone Bosons

$$|1\rangle = |\bar{K}N, I = 0\rangle$$

$$|2\rangle = |\pi\Sigma, I = 0\rangle$$

$$\bar{K} + N = \frac{3}{2f_K^2} (\sqrt{s} - M_N) S$$

$$\pi + \sum_{\Sigma} \sum_{K=22} \frac{2}{f_\pi^2} (\sqrt{s} - M_{\Sigma}) GeV$$
of riving interactions individually strong enough to produce
 $\bar{K}N$ bound state
$$\pi\Sigma$$
 resonance
$$f_\pi = 92.4 \pm 0.3 \text{ MeV}$$

$$f_K = 110.0 \pm 0.9 \text{ MeV}$$

$$f_K = 110.0 \pm 0.9 \text{ MeV}$$

$$K_{12} = \frac{-1}{2f_\pi f_K} \sqrt{\frac{3}{2}} \left(\sqrt{s} - \frac{M_\Sigma + M_N}{2}\right)$$

KN AMPLITUDES - past and present

CHIRAL SU(3) EFFECTIVE FIELD THEORY with COUPLED CHANNELS

leading order (Tomozawa - Weinberg) terms

The TWO POLES scenario

D. Jido et al., Nucl. Phys. A723 (2003) 205 T. Hyodo, W.W.: Phys. Rev. C 77 (2008) 03524

T. Hyodo, D. Jido : Prog. Part. Nucl. Phys. 67 (2012) 55

٦Π

The TWO POLES scenario

D. Jido et al. Nucl. Phys. A725 (2003) 181

T. Hyodo, W.W., Phys. Rev. C77 (2008) 03524

T. Hyodo, W.W.: Phys. Rev. C77 (2008) 03524

- Note difference in spectral maxima of $ar{\mathbf{K}}\mathbf{N}$ and $\pi \boldsymbol{\Sigma}$
- Equivalent $\overline{\mathrm{K}}\mathrm{N}$ effective interaction should produce quasibound state at 1420 MeV (not 1405 MeV)

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS:

NLO hierarchy of driving terms

leading order (Weinberg-Tomozawa) terms input: physical pion and kaon decay constants

direct and crossed **Born terms input**: axial vector constants D and F from hyperon beta decays

$$g_A = D + F = 1.26$$
$$\mathcal{L}_1^{MB} = \mathrm{T}_2$$

$$\mathcal{C}_1^{MB} = \operatorname{Tr}\left(\frac{D}{2}(\bar{B}\gamma^{\mu}\gamma_5\{u_{\mu}, B\}) + \frac{F}{2}(\bar{B}\gamma^{\mu}\gamma_5[u_{\mu}, B])\right)$$

next-to-leading order (**NLO**) **input**: 7 s-wave low-energy constants

 $\mathcal{O}(p^2)$

Technische Universität Müncher

 $\mathcal{L}_{2}^{MB} = b_{D} \operatorname{Tr} \left(\bar{B} \{ \chi_{+}, B \} \right) + b_{F} \operatorname{Tr} \left(\bar{B} [\chi_{+}, B] \right) + b_{0} \operatorname{Tr} \left(\bar{B} B \right) \operatorname{Tr} (\chi_{+})$ + $d_{1} \operatorname{Tr} \left(\bar{B} \{ u^{\mu}, [u_{\mu}, B] \} \right) + d_{2} \operatorname{Tr} \left(\bar{B} [u^{\mu}, [u_{\mu}, B]] \right)$ + $d_{3} \operatorname{Tr} (\bar{B} u_{\mu}) \operatorname{Tr} (u^{\mu} B) + d_{4} \operatorname{Tr} (\bar{B} B) \operatorname{Tr} (u^{\mu} u_{\mu}),$

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

(contd.)

$$\begin{array}{c} \overleftarrow{\mathbf{T}}_{ij} & \overleftarrow{\mathbf{T}}_{ij} & \overleftarrow{\mathbf{T}}_{ij} & \overleftarrow{\mathbf{T}}_{ij} & \overleftarrow{\mathbf{T}}_{ij} & \mathbf{T}_{ij} & \mathbf{T}_{ij}$$

channels: $\mathbf{K}^{-}\mathbf{p}, \ \bar{\mathbf{K}}^{0}\mathbf{n}, \ \pi^{0}\Sigma^{0}, \ \pi^{+}\Sigma^{-}, \ \pi^{-}\Sigma^{+}, \ \pi^{0}\Lambda, \ \eta\Lambda, \ \eta\Sigma^{0}, \ \mathbf{K}^{+}\Xi^{-}, \ \mathbf{K}^{-}\Xi^{0}$

loop integrals (with meson-baryon Green functions) using dimensional regularization:

$$\tilde{G}(q^2) = \int \frac{d^d p}{(2\pi)^d} \frac{i}{[(q-p)^2 - M_B^2 + i\epsilon][p^2 - m_{\phi}^2 + i\epsilon]}$$

finite parts including subtraction constants $a(\mu)$:

$$G(q^{2}) = a(\mu) + \frac{1}{32\pi^{2}q^{2}} \left\{ q^{2} \left[\ln\left(\frac{m_{\phi}^{2}}{\mu^{2}}\right) + \ln\left(\frac{M_{B}^{2}}{\mu^{2}}\right) - 2 \right] + (m_{\phi}^{2} - M_{B}^{2}) \ln\left(\frac{m_{\phi}^{2}}{M_{B}^{2}}\right) - 8\sqrt{q^{2}} \left|\mathbf{q}_{cm}\right| \operatorname{artanh}\left(\frac{2\sqrt{q^{2}} \left|\mathbf{q}_{cm}\right|}{(m_{\phi} + M_{B})^{2} - q^{2}}\right) \right\}$$

UPDATED ANALYSIS of $\,K^-p\,$ THRESHOLD PHYSICS

Y. Ikeda, T. Hyodo, W.W. Physics Letters B 706 (2011) 63 Nucl. Phys. A 881 (2012) 98

Chiral SU(3) coupled-channels dynamics
Tomozawa-Weinberg + Born terms + NLO

kaonic hydrogen shift & width	theory (NLO)	exp.	
$\mathbf{\Delta E}~(\mathbf{eV})$	306	$283 \pm 36 \pm 6$	
$oldsymbol{\Gamma}~(\mathbf{eV})$	$\boldsymbol{591}$	$541 \pm 89 \pm 22$	
threshold branching ratios		(SIDDHARTA)	
$\frac{\Gamma(\mathbf{K}^{-}\mathbf{p} \to \pi^{+}\boldsymbol{\Sigma}^{-})}{\Gamma(\mathbf{K}^{-}\mathbf{p} \to \pi^{-}\boldsymbol{\Sigma}^{+})}$	2.37	2.36 ± 0.04	
$\frac{\Gamma(\mathbf{K}^{-}\mathbf{p} \to \pi^{+}\boldsymbol{\Sigma}^{-}, \pi^{-}\boldsymbol{\Sigma}^{+})}{\Gamma(\mathbf{K}^{-}\mathbf{p} \to \text{all inelastic channels})}$	0.66	0.66 ± 0.01	
$\frac{\Gamma(\mathbf{K}^{-}\mathbf{p} \rightarrow \pi^{0} \mathbf{\Lambda})}{\Gamma(\mathbf{K}^{-}\mathbf{p} \rightarrow \mathbf{neutral \ states})}$	0.19	0.19 ± 0.02	

best fit achieved with $\chi^2/d.o.f.\simeq 0.9$

UPDATED ANALYSIS of K^-p THRESHOLD PHYSICS with SIDDHARTA constraints

Y. Ikeda, T. Hyodo, W.W. Physics Letters B 706 (2011) 63

Non-trivial result: best NLO fit prefers physical values of decay constants:

$f_K \; ({\rm MeV})$	110.0
$f_{\eta} \; ({\rm MeV})$	118.8

$$(f_{\pi} = 92.4 \ MeV)$$

Tomozawa-Weinberg terms dominant

NLO parameters are non-negligible but small

UPDATED ANALYSIS of K⁻p **THRESHOLD PHYSICS with SIDDHARTA constraints** (contd.)

	TW	TWB	NLO
$a_{\bar{K}N} (10^{-3}) \\ a_{\pi\Lambda} (10^{-3}) \\ a_{\pi\Sigma} (10^{-3}) \\ a_{\eta\Lambda} (10^{-3}) \\ a_{\eta\Sigma} (10^{-3}) \\ a_{K\Xi} (10^{-3}) $	$-1.57 \\ -107.97 \\ 2.31 \\ -0.20 \\ 216.37 \\ 39.48$	-1.04 -8.06 2.96 -3.46 3.52 12.51	$\begin{array}{r} -2.38 \\ -16.57 \\ 4.35 \\ -0.01 \\ 1.90 \\ 15.83 \end{array}$
$f_K ({ m MeV}) \ f_\eta ({ m MeV})$	$110.8 \\ 124.5$	$109.0 \\ 124.6$	110.0 118.8
$ \frac{\bar{b}_0 (10^{-2} \text{ GeV}^{-1})}{\bar{b}_D (10^{-2} \text{ GeV}^{-1})} \\ \frac{\bar{b}_F (10^{-2} \text{ GeV}^{-1})}{d_1 (10^{-2} \text{ GeV}^{-1})} \\ \frac{d_2 (10^{-2} \text{ GeV}^{-1})}{d_3 (10^{-2} \text{ GeV}^{-1})} \\ \frac{d_4 (10^{-2} \text{ GeV}^{-1})}{d_4 (10^{-2} \text{ GeV}^{-1})} $		 	$\begin{array}{r} -4.79\\ 0.48\\ 4.01\\ 8.65\\ -10.62\\ 9.22\\ 6.40\end{array}$
χ^2 /d.o.f.	1.12	1.15	0.96

Consistent LO \rightarrow NLO hierarchy

	TW	TWB	NLO
$\begin{array}{c} \Delta E \ [eV] \\ \Gamma \ [eV] \end{array}$	373	377	306
	495	514	591
$\gamma R_n R_c$	$2.36 \\ 0.20 \\ 0.66$	$2.36 \\ 0.19 \\ 0.66$	$2.37 \\ 0.19 \\ 0.66$
pole positions	1422 — 16 i	1421 — 17 i	1424 - 26 i
[MeV]	1384 — 90 i	1385 — 105 i	1381 - 81 i

Table 3: Results of the systematic χ^2 analysis using leading order (TW) plus Born terms (TWB) and full NLO schemes. Shown are the energy shift and width of the 1s state of kaonic hydrogen (ΔE and Γ), threshold branching ratios (γ , R_n and R_c), and the pole positions of the isospin I = 0 amplitude in the $\bar{K}N$ - $\pi\Sigma$ domain.

Table 2: Parameters resulting from the systematic χ^2 analysis, using leading order (TW) plus Born terms (TWB) and full NLO schemes. Shown are the isospin symmetric subtraction constants $a_i(\mu)$ at $\mu = 1$ GeV, the meson decay constants f_K and f_η , the renormalized NLO constants \bar{b}_i and d_i , and $\chi^2/d.o.f.$ of the fit.

Y. Ikeda, T. Hyodo, W.W. Physics Letters B 706 (2011) 63 Nucl. Phys. A 881 (2012) 98

$K^-p\,$ scattering amplitude

$$\mathbf{f}(\mathbf{K}^{-}\mathbf{p}) = \frac{1}{2} \big[\mathbf{f}_{\mathbf{\bar{K}N}}(\mathbf{I} = \mathbf{0}) + \mathbf{f}_{\mathbf{\bar{K}N}}(\mathbf{I} = \mathbf{1}) \big]$$

threshold region and subthreshold extrapolation:

 ${f \Lambda}({f 1405})\!:\, {f ar KN} \,\,({f I=0})$ quasibound state embedded in the $\pi {f \Sigma}$ continuum

CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

Predicted antikaon-neutron amplitudes at and below threshold

Needed:

accurate constraints from antikaon-deuteron threshold measurements

UPDATED ANALYSIS of $\mathrm{K}^-\mathrm{p}$ LOW-ENERGY CROSS SECTIONS

UPDATED ANALYSIS of $\mathrm{K}^-\mathrm{p}$ LOW-ENERGY CROSS SECTIONS

The TWO POLES scenario

Pole positions from chiral SU(3) coupled-channels calculation with SIDDHARTA threshold constraints:

$\mathbf{E_1} = 1424 \pm 15 \ \mathbf{MeV}$	$\mathbf{E_2} = 1381 \pm 15 \ \mathbf{MeV}$
$\Gamma_1=52\pm10{ m MeV}$	$\Gamma_2 = 162 \pm 15 \mathrm{MeV}$

Y. Ikeda, T. Hyodo, W.W.: Nucl. Phys. A 881 (2012) 98

Implications & Comments

- Output Uncertainties in $\, ar{K}N \; (I=1)$ interaction primarily from large uncertainties in the $\, {f K}^- {f p} o \pi^0 \Lambda$ channel
- **Kaonic deuterium** measurements important for providing further constraints on K^-n interaction
- B = 2 systems key issue: $\bar{\mathbf{K}}\mathbf{N}\mathbf{N} \to \mathbf{Y}\mathbf{N}$ absorption into non-mesonic hyperon-nucleon final states

ALTERNATIVE OPTIONS ?

Reproducing kaonic hydrogen and low-energy scattering data does not give unique answer - subthreshold constraints important

ALTERNATIVE OPTIONS ?

Reproducing kaonic hydrogen and low-energy scattering data does not give unique answer - subthreshold constraints important

ANTIKAON - DEUTERON THRESHOLD PHYSICS

... looking forward to **SIDDHARTA 2**

Strategies: Multiple scattering (MS) theory vs. three-body (Faddeev) calculations with Chiral SU(3) Coupled Channels input

MS approach (fixed scatterer approximation): ${f K}^-{f d}$ scattering length

Using IHW input scattering lengths constrained by SIDDHARTA kaonic hydrogen:

	full MS	-1.54 + i1.64
$\mathbf{a}(\mathbf{K}^{-}\mathbf{d})$ [fm]	no charge exchange	-1.04 + i1.34
	impulse approximation	-0.13 + i1.81

T. Hyodo, Y. Ikeda, W.W. (2012) preliminary

ANTIKAON - DEUTERON SCATTERING LENGTH

Recent calculations using SIDDHARTA - constrained input

Primary theoretical uncertainties from $\mathbf{K}^{-}\mathbf{n}$ amplitude

• Predicted energy **shift** and **width** of kaonic deuterium (Faddeev calculation):

$$\Delta E_{1s} = -794~eV \qquad \Gamma_{1s}(K^-d) = 1012~eV$$

Technische Universität München

• Not included: $\mathbf{K}^{-}\mathbf{d} \to \mathbf{YN}$ absorption

UPDATE on QUASIBOUND Kpp

3-Body (Faddeev) calculations

Variational calculations

- ... now consistently using amplitudes from **Chiral SU(3) coupled-channels** dynamics including **energy dependence** in subthreshold extrapolations
 - Calculated **binding energy** and **width** (in MeV) of the ${f K}^- pp$ system

		[1]	[2]	[3]	_
modest binding	В	16	17-23	9-16	remarkable degree of
large width	Г	41	40-70	34-46	consistency

- 1 Variational (hyperspherical harmonics): N. Barnea, A. Gal, E.Z. Livets ; Phys. Lett. B 712 (2012) 132
- [2] Variational (Gaussian trial wave functions): A. Doté, T. Hyodo, W.W.; Phys. Rev. C 79 (2009) 014003
- [3] Faddeev: Y. Ikeda, H. Kamano, T. Sato ; Prog. Theor. Phys. 124 (2010) 533

