# Nuclear Thermodynamics with Chiral Low-Momentum

# Interactions

•Corbinian Wellenhofer<sup>1</sup>, Jeremy W. Holt<sup>2</sup>, Norbert Kaiser<sup>1</sup>

<sup>1</sup>Technische Universität München <sup>2</sup>University of Washington, Seattle

# December 6, 2013







Work supported in part by DFG and NSFC (CRC110)



2 Many-Body Perturbation Theory for Nuclear Matter





### Motivation (I): Applications and Constraints of the Nuclear EoS

### Zero-Temperature Equation of State

- Bulk properties of (heavy) nuclei (e.g. saturation point, symmetry energy, ...)
- Two-solar-mass neutron stars: PSR J0348+0432 (2013), PSR J1614-2230 (2010)

### Finite-Temperature Equation of State

- Multifragmentation and fission experiments ( $\rightarrow$  critical temperature)
- Core-collapse supernovae simulations
- Heavy-ion collisions (not ultra-relativistic)
- Thermodynamics of the in-medium chiral condensate

### Motivation (I): Applications and Constraints of the Nuclear EoS

### Zero-Temperature Equation of State

- Bulk properties of (heavy) nuclei (e.g. saturation point, symmetry energy, ...)
- Two-solar-mass neutron stars: PSR J0348+0432 (2013), PSR J1614-2230 (2010)

### Finite-Temperature Equation of State

- Multifragmentation and fission experiments (-> critical temperature)
- Core-collapse supernovae simulations
- Heavy-ion collisions (not ultra-relativistic)
- Thermodynamics of the in-medium chiral condensate

#### Motivation (II): Parameter-Dependence of the Nuclear EoS from $\chi$ EFT?

In  $\chi$ EFT, the parameters (LECs) of nuclear potentials are fitted to few-body properties (NN phase-shifts, binding energies of light nuclei, ...)

**Problem:** fitting procedure not unique, there exist several different sets of LECs in the literature

#### $\rightarrow$ how do these different parameter-sets compare in the many-body sector?

### Nuclear Forces in Chiral Effective Field Theory

- Hierarchy controlled by chiral expansion parameter  $\frac{Q}{A_{\chi}}$ 
  - $Q \sim m_\pi \simeq$  140 MeV ,  $\Lambda_\chi \sim 4\pi f_\pi \simeq$  1.2 GeV
- Two types of vertices: pion-exchange- & contact-vertices
- Nuclear forces parametrized by Low-Energy Constants (LECs)



• Introduce regulator function (with "cutoff"-parameter A) in order to restrict resolution in momentum space

 $\Rightarrow$  Nuclear potentials  $V_{NN} = V_{NN}(\Lambda; c_i, d_i)$  and  $V_{3N} = V_{3N}(\Lambda; c_i, c_E, c_D)$ 

•  $c_i(\Lambda)$ ,  $d_i(\Lambda)$  from NN-scattering phase shifts,  $c_D(\Lambda)$ ,  $c_E(\Lambda)$  from 3N & 4N observables

# Chiral-Low Momentum Interactions

•  $V_{NN}(\Lambda_R)$ : low-momentum potential with smooth regulator

$$f(k',k) = \exp\left[-\left(\frac{k}{\Lambda_R}\right)^{2n} - \left(\frac{k'}{\Lambda_R}\right)^{2n}\right]$$

Here: n3lo-potentials constructed by Coraggio, Entem, Machleidt, Gazit et al.

arXiv:nucl-th/0701065

## Chiral-Low Momentum Interactions

•  $V_{NN}(\Lambda_R)$ : low-momentum potential with smooth regulator

$$f(k',k) = \exp\left[-\left(\frac{k}{\Lambda_R}\right)^{2n} - \left(\frac{k'}{\Lambda_R}\right)^{2n}\right]$$

Here: n3lo-potentials constructed by Coraggio, Entem, Machleidt, Gazit et al.

arXiv:nucl-th/0701065

•  $V_{\text{low-}k}(\Lambda)$ : RG-evolution to low (half-)relative-momenta ( $\Lambda \sim 2.0 \text{ fm}^{-1} \Rightarrow \text{universality}$ )



Bogner, Furnstahl, Schwenk; arXiv:0912.3688v3

Advantage: do not have to worry about refitting LECs for different  $\Lambda$ Disadvantage: don't know how LECs change with  $\Lambda$ , but need  $c_1$ ,  $c_3$  &  $c_4$  for 3N forces Here: Nijmegen LECs +  $cE(\Lambda)$  and  $cD(\Lambda)$  refitted to 3N & 4N binding energies

## Chiral-Low Momentum Interactions

•  $V_{NN}(\Lambda_R)$ : low-momentum potential with smooth regulator

$$f(k',k) = \exp\left[-\left(\frac{k}{\Lambda_R}\right)^{2n} - \left(\frac{k'}{\Lambda_R}\right)^{2n}\right]$$

Here: n3lo-potentials constructed by Coraggio, Entem, Machleidt, Gazit et al.

arXiv:nucl-th/0701065

•  $V_{\text{hwe},k}(\Lambda)$ : RG-evolution to low (half-)relative-momenta ( $\Lambda \sim 2.0 \,\text{fm}^{-1} \Rightarrow \text{universality}$ )



Bogner, Furnstahl, Schwenk; arXiv:0912.3688v3

Advantage: do not have to worry about refitting LECs for different  $\Lambda$ Disadvantage: don't know how LECs change with  $\Lambda$ , but need  $c_1$ ,  $c_3 \& c_4$  for 3N forces Here: Nijmegen LECs +  $cE(\Lambda)$  and  $cD(\Lambda)$  refitted to 3N & 4N binding energies

| Summary: sets of low-momentum NN and 3N potentials used in this work |                      |          |        |        |                         |                           |                         |   |
|----------------------------------------------------------------------|----------------------|----------|--------|--------|-------------------------|---------------------------|-------------------------|---|
| identifier                                                           | $\Lambda_{(R)}$      | n        | сE     | сD     | c1 [GeV <sup>-1</sup> ] | $c_{3} [\text{GeV}^{-1}]$ | c4 [GeV <sup>-1</sup> ] | 1 |
| n 3 o 414                                                            | 2.1 fm <sup>-1</sup> | 10       | -0.072 | -0.40  | -0.81                   | -3.0                      | 3.4                     | 1 |
| n 3lo 450                                                            | 2.3 fm <sup>-1</sup> | 3        | -0.106 | -0.24  | -0.81                   | -3.4                      | 3.4                     |   |
| n 3lo 500                                                            | 2.5 fm <sup>-1</sup> | 2        | -0.205 | -0.20  | -0.81                   | -3.2                      | 5.4                     |   |
| VLK21                                                                | 2.1 fm <sup>-1</sup> | $\infty$ | -0.625 | -2.062 | -0.76                   | -4.78                     | 3.96                    |   |
| VLK23                                                                | 2.3 fm <sup>-1</sup> | $\infty$ | -0.822 | -2.785 | -0.76                   | -4.78                     | 3.96                    |   |

# PART II: Many-Body Perturbation Theory for Nuclear Matter

Many-Body Perturbation Theory: T=0 vs. T=finite

• 
$$T = 0$$
:  $E(\kappa_F) = E_0 + E_{1,NN} + E_{1,3N} + E_{2,normal} + ...$  (BG-formula)

 $\kappa_F$  = Fermi-momentum of non-interacting system,  $\rho = \frac{2}{3\pi^2} \kappa_F^3$  $\rightsquigarrow$  calculation in the canonical ensemble, i.e.  $F(\rho, T = 0) = E(\kappa_F)$ 



Antisymmetrized Goldstone-diagrams (T = 0): hole-lines  $|\vec{k}| \le \kappa_F$ particle-lines  $|\vec{k}| \ge \kappa_F$ 

### Many-Body Perturbation Theory: T=0 vs. T=finite

 T = 0: E(κ<sub>F</sub>) = E<sub>0</sub> + E<sub>1,NN</sub> + E<sub>1,3N</sub> + E<sub>2,normal</sub> + ... (BG-formula) κ<sub>F</sub> = Fermi-momentum of non-interacting system, ρ = <sup>2</sup>/<sub>3π<sup>2</sup></sub> κ<sub>F</sub><sup>3</sup> → calculation in the canonical ensemble, i.e. F(ρ, T = 0) = E(κ<sub>F</sub>)
 T ≠ 0: Ω(μ, T) = Ω<sub>0</sub> + Ω<sub>1,NN</sub> + Ω<sub>1,3N</sub> + Ω<sub>2,normal</sub> + Ω<sub>2,anomalous</sub> + ... grand-canonical, μ = chemical potential of the interacting system



### Kohn-Luttinger-Ward Method

### Idea: Expand about non-interacting system (Free Fermi Gas)

Is Formally postulate equality of densities

$$\rho(\mu_{\mathbf{0}}, T) = -\frac{\partial \Omega_{\mathbf{0}}(\mu_{\mathbf{0}}, T)}{\partial \mu_{\mathbf{0}}} \stackrel{!}{=} -\frac{\partial \Omega(\mu, T)}{\partial \mu} = \rho(\mu, T)$$

2 Formally expand chemical potential in terms of interaction strength  $\lambda$ 

$$\mu = \mu_0 + \lambda \mu_1 + \lambda^2 \mu_2 + \mathcal{O}(\lambda^3)$$

Second the right-hand side of the density equation around µ₀ and solve iteratively for increasing powers of λ: gives µ<sub>i</sub>(µ₀), i ≥ 1

 $\bigcirc$  Expand every term in the grand-canonical perturbation series around  $\mu_0$ 

$$F(\mu_{0}) = F_{0}(\mu_{0}) + \Omega_{1,NN}(\mu_{0}) + \Omega_{1,3N}(\mu_{0}) + \Omega_{2,normal}(\mu_{0})$$
$$+ \left[\Omega_{2,anomalous}(\mu_{0}) - \frac{1}{2} \frac{(\partial \Omega_{1,NN}/\partial \mu_{0})^{2}}{\partial^{2} \Omega_{0}/\partial \mu_{0}^{2}}\right]$$

$$\equiv F_{0}(\mu_{0}) + F_{1,NN}(\mu_{0}) + F_{1,3N}(\mu_{0}) + F_{2,normal}(\mu_{0}) + \left[F_{2,anomalous}(\mu_{0}) + F_{ADT}(\mu_{0})\right]$$

The additional ADT-terms cancel the anomalous contributions in the T 
ightarrow 0 limit

$$\Rightarrow \quad F(\mu_0) \xrightarrow{\boldsymbol{T} \to \mathbf{0}} E(\kappa_F), \quad \mu_0 \xrightarrow{\boldsymbol{T} \to \mathbf{0}} \frac{\kappa_F^2}{2M_N}$$

Summary: KLW-method gives the consistent continuation of the BG-formula to T=finite

## Density-Dependent Two-Nucleon Interaction (DDNN)

- Effective NN potential  $\tilde{V}_{3N}$  constructed from genuine 3N forces by integrating out (i.e. closing) one nucleon-line in the 3N scattering-diagram Heavyside step-function  $\Rightarrow \tilde{V}_{3N}$  is density-dependent
- At T=finite  $\tilde{V}_{3N}$  becomes also temperature-dependent:  $\tilde{V}_{3N}(\rho, T)$
- Regularization of  $\tilde{V}_{3N}$ : in n3lo-potential-sets  $\tilde{V}_{3N}$  has a smooth regulator, in VLK-potential-sets a sharp cutoff



Antisymmetrized Goldstone diagrams representing the 1st-order and 2nd-order contributions associated with the DDNN potential (represented by zigzag lines)

Diagrams (a) and (d) have a topological factor of  $\frac{1}{3}$ , and diagram (e) one of  $\frac{1}{9}$ 

Diagrams (b) and (d) have a symmetry factor 2 due to exchange of interaction-lines

# How Good is this Approximation?

Compare first-order DDNN contribution with genuine 3N contribution:



 $\Rightarrow$  Using  $ilde{V}_{3N}(
ho, T)$  instead of  $V_{3N}$  at second order is justified

# PART V: Nuclear Equation of State

## Convergence of the Perturbation Series



## Free Energy per Nucleon and Pressure Isotherms (I)



## Free Energy per Nucleon and Pressure Isotherms (II)



## Second-Order Normal Contributions



### Summary

• Zero-Temperature EoS:

Relatively good model-independence, for n3lo500 best agreement with empirical saturation point ,  $\bar{E}_0 = -16.50$  MeV,  $\rho_0 = 0.174$  fm<sup>-3</sup> and compression modulus, K = 250 MeV

• Thermodynamical EoS:

Reasonable results only for n3lo-potentials, for VLK21 (and VLK23) pressure isotherm crossing caused by large 2nd-order normal DDNN contributions

 $\Rightarrow$  Nijmegen LECs do not work for many-nucleon system in 2nd-order calculation

 ${\sf Appendix}$ 

# <u>Free Energy Density (Non-Convex</u> $\Rightarrow$ Phase Coexistence)



## Second-Order Anomalous Contributions

