RUB

n

р

23

Status of three-nucleon forces

Evgeny Epelbaum, RUB

μ-Workshop, CRC 110, TU München, October 25, 2012

n

12

Outline

- Introduction
- 3NF: Where do we stand
- 3NF beyond leading order
- Summary and outlook

From QCD to nuclear physics

The roadmap: QCD -> Chiral Perturbation Theory -> hadron dynamics

- Pions and up to 1 nucleon: ChPT for the scattering amplitude
- 2 and more nucleons: ChPT for nuclear forces/currents Weinberg '91

$$\left[\left(\sum_{i=1}^{A} \frac{-\vec{\nabla}_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived within ChPT}}\right] |\Psi\rangle = E|\Psi\rangle$$

- unified description of ππ, πN and NN
- consistent many-body forces and currents
- systematically improvable
- bridging different reactions (electroweak, π-prod., ...)
- precision physics with/from light nuclei

Chiral expansion of nuclear forces

(numbers from Pudliner et al. PRL 74 (95) 4396)

Nucleon-nucleon potential at N³LO

van Kolck et al.'94; Friar & Coon '94; Kaiser et al. '97; E.E. et al. '98,'03; Kaiser '99-'01; Higa, Robilotta '03; ...

- Long-range: parameter-free (all LECs from πN)
- Short-range part: 24 LECs tuned to NN data
- Accurate description of NN data up to ~ 200 MeV Entem-Machleidt, EE-Glöckle-Meißner

np cross section @ 50 MeV

Recent reviews:

EE, Prog. Part Nucl. Phys. 57 (06) 654;

EE, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773;

Entem, Machleidt, Phys. Rept. 503 (11) 1;

EE, Meißner, Ann. Rev. Nucl. Part. Sci. 62 (2012) 159.

χ expansion of the long-range force

日 X 均 村 X 均 赵 赵…

The challenge: Understanding the 3N force

- Today's few- and many-body calculations have reached the level of accuracy at which it is necessary to include 3NFs
- Inspite of decades of efforts, the structure of the 3NF is still poorely understood

Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rev. Mod. Phys. 75 (2012) 016301

All the necessary ingredients for a precision description of the 3NF are available:

Chiral EFT + authom. PWD + FY equations + few-body data

first results already coming...

Most general structure of a local 3NF

Krebs, Gasparyan, EE, in preparation

A meaningful comparison of 3NF terms requires a complete set of independent operators. Most general local 3NF involves 89 operators, can be generated (by permutations) from 22 structures:

 $V_{3N} = \sum_{i=1}^{22} \mathcal{G}(F_i(r_{12}, r_{23}, r_{31})) + \text{ perm.}$

calculated in ChPT; long-range terms parameter free...

Generators \mathcal{G} of 89 independent operators	S	A	G_1	G_2	$G_1(12)$	$G_2(12)$
1	\boldsymbol{O}_1	0	0	0	0	0
$oldsymbol{ au}_1\cdotoldsymbol{ au}_2$	O_2	0	O ₃	\boldsymbol{O}_4	O_3	O_4
$ec{\sigma_1}\cdotec{\sigma_3}$	O_5	0	O_6	O_7	$-\frac{1}{2}O_{6}$	$-\frac{1}{2}O_{7}$
$oldsymbol{ au}_1\cdotoldsymbol{ au}_3ec{\sigma}_1\cdotec{\sigma}_3$	0 ₈	0	O_9	\boldsymbol{O}_{10}	$-\frac{1}{2}O_{9}$	$-\frac{1}{2}O_{10}$
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{\sigma}_1\cdotec{\sigma}_2$	\boldsymbol{O}_{11}	\boldsymbol{O}_{12}	O_{13}	\boldsymbol{O}_{14}	$oldsymbol{O}_{15}$	$oldsymbol{O}_{16}$
$oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_1 \cdot (ec{\sigma}_2 imes ec{\sigma}_3)$	O_{17}	0	0	0	0	0
$oxed au_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_2 \cdot (ec{q}_1 imes ec{q}_3)$	O_{18}	0	\boldsymbol{O}_{19}	O_{20}	$-\frac{1}{2}O_{19}$	$-\frac{1}{2}O_{20}$
$\vec{q_1}\cdot\vec{\sigma_1}\vec{q_1}\cdot\vec{\sigma_3}$	O_{21}	O ₂₂	O_{23}	O_{24}	O ₂₅	O_{26}
$ec{q_1}\cdotec{\sigma_3}ec{q_3}\cdotec{\sigma_1}$	O_{27}	0	O_{28}	O_{29}	$-\frac{1}{2}O_{28}$	$-\frac{1}{2}O_{29}$
$ec{q_1}\cdotec{\sigma_1}ec{q_3}\cdotec{\sigma_3}$	O ₃₀	0	O_{31}	O_{32}	$-\frac{1}{2}O_{31}$	$-\frac{1}{2}O_{32}$
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{q}_1\cdotec{\sigma}_1ec{q}_1\cdotec{\sigma}_2$	O ₃₃	O_{34}	O_{35}	O_{36}	O ₃₇	O_{38}
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{q}_1\cdotec{\sigma}_1ec{q}_3\cdotec{\sigma}_2$	O ₃₉	\boldsymbol{O}_{40}	\boldsymbol{O}_{41}	\boldsymbol{O}_{42}	$oldsymbol{O}_{43}$	$oldsymbol{O}_{44}$
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{ au}_3\cdotec{ au}_1ec{q}_1\cdotec{ au}_2$	O_{45}	O_{46}	O_{47}	\boldsymbol{O}_{48}	$oldsymbol{O}_{49}$	$oldsymbol{O}_{50}$
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{q}_3\cdotec{\sigma}_1ec{q}_3\cdotec{\sigma}_2$	O_{51}	O_{52}	O_{53}	\boldsymbol{O}_{54}	$oldsymbol{O}_{55}$	$oldsymbol{O}_{56}$
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{q}_1\cdotec{\sigma}_2ec{q}_1\cdotec{\sigma}_3$	O_{57}	0	O_{58}	\boldsymbol{O}_{59}	$-2O_{58}$	$-2O_{59}$
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3arphi_3\cdotec{\sigma}_2ec{q}_3\cdotec{\sigma}_3$	O_{60}	\boldsymbol{O}_{61}	O_{62}	O_{63}	$oldsymbol{O}_{64}$	$oldsymbol{O}_{65}$
$oldsymbol{ au}_2\cdotoldsymbol{ au}_3ec{q}_1\cdotec{\sigma}_2ec{q}_3\cdotec{\sigma}_3$	O_{66}	$-O_{61}$	O_{67}	O_{68}	$-2O_{62}-O_{64}-2O_{67}$	$-2O_{63}-O_{65}-2O_{68}$
$oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_1 \cdot ec{\sigma}_2 ec{\sigma}_3 \cdot (ec{q}_1 imes ec{q}_3)$	O_{69}	0	\boldsymbol{O}_{70}	\boldsymbol{O}_{71}	O_{70}	O_{71}
$oldsymbol{ au}_1\cdot(oldsymbol{ au}_2 imesoldsymbol{ au}_3)ec{\sigma}_3\cdotec{q}_1ec{q}_1\cdot(ec{\sigma}_1 imesec{\sigma}_2)$	O_{72}	O ₇₃	O_{74}	O_{75}	O_{76}	O 77
$\boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \overline{\times \boldsymbol{\tau}_3}) \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_2 \cdot \vec{q}_1 \vec{\sigma}_3 \cdot (\vec{q}_1 \times \vec{q}_3)$	O_{78}	O 79	O_{80}	O_{81}	O ₈₂	O ₈₃
$\boxed{\boldsymbol{\tau}_1\cdot(\boldsymbol{\tau}_2\times\boldsymbol{\tau}_3)\vec{\sigma}_1\cdot\vec{q}_3\vec{\sigma}_2\cdot\vec{q}_3\vec{\sigma}_3\cdot(\vec{q}_1\times\vec{q}_3)}$	O_{84}	0	O_{85}	O_{86}	O_{85}	O_{86}
$\boldsymbol{\tau}_1 \cdot (\boldsymbol{\tau}_2 \overline{\times \boldsymbol{\tau}_3}) \vec{\sigma}_1 \cdot \vec{q}_1 \vec{\sigma}_2 \cdot \vec{q}_3 \vec{\sigma}_3 \cdot (\vec{q}_1 \times \vec{q}_3)$	O_{87}	$-O_{79}$	O_{88}	O_{89}	$O_{80} - O_{82} + O_{88}$	$O_{81} - O_{83} + O_{89}$

The generators are defined as:

$$S(\mathcal{O}) := \frac{1}{6} \sum_{P \in S_3} P\mathcal{O}$$
$$A(\mathcal{O}) := \frac{1}{6} \sum_{P \in S_3} (-1)^P P\mathcal{O}$$
$$G_2(\mathcal{O}) := \frac{\sqrt{3}}{2} [S_{23}S_{13} - S_{12}S_{13}] (\mathcal{O})$$
$$G_1(\mathcal{O}) := \left[S_{13} - \frac{1}{2} (S_{23}S_{13} + S_{12}S_{13}) \right] (\mathcal{O})$$

3N force: Where do we stand

p-³He differential c

Leading chiral 3NF and nuclear structure

Ab initio methods (NCSM, GFMC, CCM, Lattice, ...) + renormalization ideas (SRG, V_{low-k}, UCOM)

- sensitive to details of the 3NF
- many promising results (neutron-rich nuclei, long lifetime of ¹⁴C, neutron star radii, ...)

3N force beyond leading order

3N force: corrections beyond LO

3NF topologies up to N⁴LO (subleading one-loop order)

 $Q^{3}[N^{2}LO] + Q^{4}[N^{3}LO] + Q^{5}[N^{4}LO] + ...$

 $Q^4 [N^3LO] + Q^5 [N^4LO] + ...$

N²LO contributions (leading 3NF) nowadays included in most few-/many-body calculations

- The leading corrections (N³LO) have been worked out recently Ishikawa, Robilotta, PRC76 (07); Bernard, EE, Krebs, Meißner, PRC77 (08); PRC84 (11)
 - parameter-free!
 - rich spin-momentum structure, especially from the ring diagrams
 - partial wave decomposition is still in progress
 - the technology for numerical PWD has been developed Skibinski et al., PRC84 (11)
 - calculations presently running at JUROPA@FZJ, OSC@OhioState,...
 - estimated need: ~ 10.000.000 CPU hours

3N force: corrections beyond LO

Impact of some of the N³LO 3NF terms on nd A_y (incomplete)

= $X + N^{3}LO 3NF (2\pi-exch.)$

= X + N³LO 3NF (2π-exch. & 2π-1π-exch.)

= X + N³LO 3NF (2π-exch. & 2π-1π-exch. & ring)

N³LO corrections seem to be rather small,

need to go to higher orders...

3NF: chiral expansion of the longest-range piece (2π)

The TPE 3NF has the form (modulo 1/m-terms):

$$V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{[q_1^2 + M_\pi^2] \, [q_3^2 + M_\pi^2]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$$

• subleading:
$$\mathcal{A}^{(4)}(q_2) = \frac{g_A^4}{256\pi F_\pi^6} \Big[A(q_2) \left(2M_\pi^4 + 5M_\pi^2 q_2^2 + 2q_2^4 \right) + \left(4g_A^2 + 1 \right) M_\pi^3 + 2 \left(g_A^2 + 1 \right) M_\pi q_2^2 \Big],$$
$$\mathcal{B}^{(4)}(q_2) = -\frac{g_A^4}{256\pi F_\pi^6} \Big[A(q_2) \left(4M_\pi^2 + q_2^2 \right) + (2g_A^2 + 1)M_\pi \Big] \qquad \text{Ishikawa, Robilotta '07} \\ \text{Bernard, EE, Krebs, Meißner '08} \Big]$$

sub-subleading: Krebs, Gasparyan, EE '12

$$\begin{aligned} \mathcal{A}^{(5)}(q_{2}) &= \frac{g_{A}}{4608\pi^{2}F_{\pi}^{6}} \Big[M_{\pi}^{2}q_{2}^{2}(F_{\pi}^{2}\left(2304\pi^{2}g_{A}(4\bar{e}_{14}+2\bar{e}_{19}-\bar{e}_{22}-\bar{e}_{36})-2304\pi^{2}\bar{d}_{18}c_{3}\right) \\ &+ g_{A}(144c_{1}-53c_{2}-90c_{3})) + M_{\pi}^{4}\left(F_{\pi}^{2}\left(4608\pi^{2}\bar{d}_{18}(2c_{1}-c_{3})+4608\pi^{2}g_{A}(2\bar{e}_{14}+2\bar{e}_{19}-\bar{e}_{36}-4\bar{e}_{38})\right) \\ &+ g_{A}\left(72\left(64\pi^{2}\bar{l}_{3}+1\right)c_{1}-24c_{2}-36c_{3}\right)\right) + q_{2}^{4}\left(2304\pi^{2}\bar{e}_{14}F_{\pi}^{2}g_{A}-2g_{A}(5c_{2}+18c_{3})\right)\Big] \\ &- \frac{g_{A}^{2}}{768\pi^{2}F_{\pi}^{6}}L(q_{2})\left(M_{\pi}^{2}+2q_{2}^{2}\right)\left(4M_{\pi}^{2}(6c_{1}-c_{2}-3c_{3})+q_{2}^{2}(-c_{2}-6c_{3})\right), \\ \mathcal{B}^{(5)}(q_{2}) &= -\frac{g_{A}}{2304\pi^{2}F_{\pi}^{6}}\Big[M_{\pi}^{2}\left(F_{\pi}^{2}\left(1152\pi^{2}\bar{d}_{18}c_{4}-1152\pi^{2}g_{A}(2\bar{e}_{17}+2\bar{e}_{21}-\bar{e}_{37})\right)+108g_{A}^{3}c_{4}+24g_{A}c_{4}\right) \\ &+ q_{2}^{2}\left(5g_{A}c_{4}-1152\pi^{2}\bar{e}_{17}F_{\pi}^{2}g_{A}\right)\Big] + \frac{g_{A}^{2}c_{4}}{384\pi^{2}F_{\pi}^{6}}L(q_{2})\left(4M_{\pi}^{2}+q_{2}^{2}\right) \end{aligned}$$

Krebs, Gasparyan, EE '12

πN phase shifts in HB ChPT up to Q⁴ (KH PWA) **3NF** "structure functions" ð [degree] KH 10-5 S₃₁ 5 A $[M_{\pi}^{-3}]$ -2 -2 -10 0 50 150 200 50 200 50 150 200 100 0 100 150 0 100 0 N2LO 30 -3 ð [degree] N3LO 0 P₃₁ P₃₃ P₁₃ 15 -4 N4LO -5 0 50 100 150 200 ٥ 50 100 150 200 50 100 150 200 0 n 0.08 ð [degree] 0.5 0.2 0.2 D₁₃ D₁₅ D₃₃ 0.04 B $[M_{\pi}^{-5}]$ 0.4 0.1 0.3 0 0 150 200 50 150 200 150 200 50 0 100 50 100 0 100 0 0.2 p_{Lab} [MeV/c] p_{Lab} [MeV/c] 0 0.1 D₃₅ -0.1 0 50 100 150 200 250 300 0 -0.2 150 200 0 50 100 q₂ [MeV] p_{Lab} [MeV/c]

The determined values of LECs

	c_1	c_2	<i>C</i> 3	c_4	$\bar{d}_1 + \bar{d}_2$	$ar{d}_3$	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{15}	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
Q^4 fit to GW	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-5.80	1.76	-0.58	0.96
Q^4 fit to KH	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26

Krebs, Gasparyan, EE '12

r Chiral expansion of TPE "structure functions" F_i (in MeV) in the equilateral-triangle configuration 0.03 1.5 0 F₁₅ -0.02 F_6 F_{A} 4 100 0.02 3 -5 -0.04 2 50 0.01 -0.06 0,5 1 -10 -0,08 0 0 0 0 F_{16} F_{17} F 100 -20 -0.2 0,004 18 -40 -0.4 0,5 50 0.5 0.002 -60 -0.6 0 0 Ω 0 -0,05 30 -5 0,3 F. F. F -10 -0.1 20 19 -10 -0.1 20 0,2 -20 -0.2 -0.15 -15 10 0.1 -30 -0.3 -20 -0,2 -25 -0.25 -0.4 -40 0 0 1.5 2.5 1.5 2.5 2 3 2 3 F₂₂ -10 -0,1r [fm] r [fm] -0,2 -20 -0,3 -30 -0.4 -40 • only 10 structures out of 22... N²LO 1.5 2 2,5 3 r [fm] N²LO+N³LO

N²LO+N³LO+N⁴LO

 excellent convergence for r > 1.5 fm (as one would expect)

3NF: chiral expansion of the intermediate-range terms

2π - 1π & ring graphs up to N⁴LO

2π - 1π -exchange 3NF at N⁴LO

Krebs, Gasparyan, EE, in preparation

Ring 3NF topology at N4LO

Krebs, Gasparyan, EE, in preparation

Ring "structure functions" F_i (in MeV) in the equilateral-triangle configuration

- 20 structures out of 22...
- large N⁴LO contributions (as expected)
- N⁴LO converged ??

Chiral expansion of the 3NF

Chiral 3NF: Δ-less vs. Δ-full

Krebs, Gasparyan, EE, to appear

N⁴LO contributions still miss important physics of double and triple Δ-excitations

 \rightarrow it is more efficient to include Δ as an explicit DOF

• there are indications that N³LO- Δ results for F_i already provide a good approximation

intermediate and short-range topologies in progress...

Summary and outlook

Towards high-precision chiral three-nucleon forces

- technology to (numerically) carry out PWD for ANY 3NF has been developed (but requires huge computational recources...)
- 3NF at N²LO: nowadays standard, promising results, room for improvement
- 3NF at N³LO: work in progress (PWD, determination of D, E). First results indicate that N³LO corrections might be small; evidence for significant higher-order contributions (2π-1π, ring)
- 3NF beyond N³LO: long-range terms (parameter-free) worked out completely at N⁴LO and N³LO-Δ (seems to be the most efficient approach); shorter-range contributions in progress

Future: determination of LECs in the short-range parts of the 3NF, effects of the novel structures in the 3N and 4N continuum and light nuclei, lots of interesting physics...