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 From QCD to nuclear physics
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derived within ChPT

The roadmap: QCD         Chiral Perturbation Theory          hadron dynamics
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unified description of  ππ, 
πN and NN

consistent many-body 
forces and currents

systematically improvable

bridging different reactions 
(electroweak, π-prod., ...)

precision physics with/from 
light nuclei

contact interactions

multiple GB 
exchange (ChPT)

Weinberg ’91

Pions and up to 1 nucleon: ChPT for the scattering amplitude

2 and more nucleons: ChPT for nuclear forces/currents 



 Chiral expansion of nuclear forces
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Zwei-Nukleon-Kraft

Führender Beitrag 

Korrektur 1. Ordnung

Korrektur 2. Ordnung

Korrektur 3. Ordnung

Drei-Nukleon-Kraft Vier-Nukleon-KraftTwo-nucleon force Three-nucleon force Four-nucleon force

LO (Q0)   

NLO (Q2)

N2LO (Q3)

N3LO (Q4)

(numbers from Pudliner et al. PRL 74 (95) 4396)



 Nucleon-nucleon potential at N3LO
van Kolck et al.ʼ94; Friar & Coon ʼ94; Kaiser et al. ʼ97; E.E. et al. ʼ98,ʻ03; Kaiser ʼ99-ʼ01; Higa, Robilotta ʼ03; …
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χ expansion of the long-range force
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np cross section @ 50 MeV

Entem-Machleidt,  EE-Glöckle-Meißner

Long-range: parameter-free (all LECs from πN)
Short-range part: 24 LECs tuned to NN data
Accurate description of NN data up to ~ 200 MeV

Recent reviews:
    EE, Prog. Part Nucl. Phys. 57 (06) 654;  
    EE, Hammer, Meißner, Rev. Mod. Phys. 81 (09) 1773; 
    Entem, Machleidt, Phys. Rept. 503 (11) 1;  
    EE, Meißner, Ann. Rev. Nucl. Part. Sci. 62 (2012) 159.



 The challenge: 
Understanding the 3N force

Kalantar-Nayestanaki, EE, Messchendorp, Nogga, Rev. Mod. Phys. 75 (2012) 016301 

Todayʻs few- and many-body calculations have reached the 
level of accuracy at which it is necessary to include 3NFs 

All the necessary ingredients for a precision description of 
the 3NF are available:
Chiral EFT + authom. PWD + FY equations + few-body data 

Inspite of decades of efforts, the structure of the 3NF is still 
poorely understood 

first results already coming...  



 Most general structure of a local 3NF
A meaningful comparison of 3NF terms requires a complete set of independent operators. 

Krebs, Gasparyan, EE, in preparation
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• In three space-dimensions we can also use the Schouten identity

δi,jεk,l,m − δi,kεl,m,j + δi,lεm,j,k − δi,mεj,k,l = 0.

to eliminate redundant structures.

• A general local three-nucleon force can be written in a form

∑

i

Oi(#σ1,#σ2,#σ3, τ 1, τ 2, τ 3, #q1, #q3)Fi(q1, q3, #q1 · #q3).

where Oi are spin-momentum-isospin operators and the structure functions Fi depend only on absolute values
|#q1|, |#q3| and on the scalar product #q1 · #q3. The three-nucleon force is invariant under any permutation P ∈ S3

where S3 is a permutation group:

∑

i

POiPFi =
∑

i

OiFi.

To understand the behavior of structure functions under the permutation of momenta it is important to analyze
the behavior of the operatorsOi. under permutation P . Since the operator set is complete the permuted operator
POi is just a linear combination of Oj ’s:

POi =
∑

j

D(P )i,jOj ,

where D(P ) is some invertible matrix. It is easy to show that D is a representation of S3. Indeed

P ′POi =
∑

j

D(P ′)i,jPOj =
∑

j,k

D(P ′)i,jD(P )j,kOk =
∑

j

D(P ′P )i,jOj ,

from which we get

D(P ′P ) = D(P ′)D(P ).

The transformation of the structure functions Fi under permutation P can be now read off from

∑

i

OiFi =
∑

i

POiPFi =
∑

i,j

D(P )i,jOjPFi =
∑

i

Oi





∑

j

PFjD(P )j,i



 ,

and so we get

Fi =
∑

j

PFjD(P )j,i or PFi =
∑

j

FjD(P−1)j,i.

We can always choose the basis in which D is a block diagonal matrix. The blocks are given by the irreducible
representations of S3. There are 3 inequivalent irreducible representations of S3:

1. The trivial 1 and antisymmetric (−1)P representations are one dimensional

2. The third irreducible representation is two dimensional and is e.g. given by

D(()) =

(

1 0
0 1

)

, D((12)) = − 1
2

(

1
√
3√

3 −1

)

, D((13)) =

(

1 0
0 −1

)

,

D((23)) = 1
2

(

−1
√
3√

3 1

)

, D((123)) = − 1
2

(

1 −
√
3√

3 1

)

, D((132)) = − 1
2

(

1
√
3

−
√
3 1

)

,

(5.32)

where we used the cyclic notation for permutations[? ]. To construct the operators Oi for which D(P ) is
in block diagonal form we introduce the following functions:

S(O) :=
1

6

∑

P∈S3

PO, A(O) :=
1

6

∑

P∈S3

(−1)PPO.
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where we used the cyclic notation for permutations[? ]. To construct the operators Oi for which D(P ) is
in block diagonal form we introduce the following functions:

S(O) :=
1

6

∑

P∈S3

PO, A(O) :=
1

6

∑

P∈S3

(−1)PPO.
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Generators G of 89 independent operators S A G1 G2 G1(12) G2(12)

1 O1 - - - - -

τ 1 · τ 2 O2 - O3 O4 - -

!σ1 · !σ3 O5 - O6 O7 - -

τ 1 · τ 3!σ1 · !σ3 O8 - O9 O10 - -

τ 2 · τ 3!σ1 · !σ2 O11 O12 O13 O14 O15 O16

τ 1 · (τ 2 × τ 3)!σ1 · (!σ2 × !σ3) O17 - - - - -

τ 1 · (τ 2 × τ 3)!σ2 · (!q1 × !q3) O18 - O19 O20 - -

!q1 · !σ1!q1 · !σ3 O21 O22 O23 O24 O25 O26

!q1 · !σ3!q3 · !σ1 O27 - O28 O29 - -

!q1 · !σ1!q3 · !σ3 O30 - O31 O32 - -

τ 2 · τ 3!q1 · !σ1!q1 · !σ2 O33 O34 O35 O36 O37 O38

τ 2 · τ 3!q1 · !σ1!q3 · !σ2 O39 O40 O41 O42 O43 O44

τ 2 · τ 3!q3 · !σ1!q1 · !σ2 O45 O46 O47 O48 O49 O50

τ 2 · τ 3!q3 · !σ1!q3 · !σ2 O51 O52 O53 O54 O55 O56

τ 2 · τ 3!q1 · !σ2!q1 · !σ3 O57 - O58 O59 - -

τ 2 · τ 3!q3 · !σ2!q3 · !σ3 O60 O61 O62 O63 O64 O65

τ 2 · τ 3!q1 · !σ2!q3 · !σ3 O66 - O67 O68 - -

τ 1 · (τ 2 × τ 3)!σ1 · !σ2!σ3 · (!q1 × !q3) O69 - O70 O71 - -

τ 1 · (τ 2 × τ 3)!σ3 · !q1!q1 · (!σ1 × !σ2) O72 O73 O74 O75 O76 O77

τ 1 · (τ 2 × τ 3)!σ1 · !q1!σ2 · !q1!σ3 · (!q1 × !q3) O78 O79 O80 O81 O82 O83

τ 1 · (τ 2 × τ 3)!σ1 · !q3!σ2 · !q3!σ3 · (!q1 × !q3) O84 - O85 O86 - -

τ 1 · (τ 2 × τ 3)!σ1 · !q1!σ2 · !q3!σ3 · (!q1 × !q3) O87 - O88 O89 - -

TABLE I: 22 operators G1, . . . ,G22 generate operators O1, . . . ,O89 . The operators Oi are generated by application of one of
the 6 functions S,A,G1, G2, G1(12), G2(12) on one of Gj ’s: e.g. O2 = S(G2 = τ 1 · τ 2),O3 = G1(G2 = τ 1 · τ 2) etc. By ”-” we
denote the structures which either vanish or can be expressed as linear combination of 89 given operators.

It is obvious that

PS(O) = S(O) and PA(O) = (−1)PA(O)

for all P ∈ S3 such that S(O) and A(O) transform under one dimensional representations. To construct
operators which transform under two dimensional irreducible representation we introduce

G1(O) :=

[

S13 −
1

2
(S23S13 + S12S13)

]

(O), G2(O) :=

√
3

2
[S23S13 − S12S13] (O),

with

Sij(O) :=
1

2
(O + (ij)O) .

The following 2-vector of operators transforms under the third 2-dim. irreducible representation:
(

PG1(O)
PG2(O)

)

= D(P )

(

G1(O)
G2(O).

)

With all the constraints and notation described above we found 22 independent generating operators which generate
89 independent operators. The generating operators G1, . . . ,G22 as well as linear-independent generated operators
which we denote by O1, . . . ,O89 can be found in Table I. The full local three-nucleon force in this notation can be
given in symmetric form by

89
∑

i=1

Oi(!σ1,!σ2,!σ3, τ 1, τ 2, τ 3, !q1, !q3)Fi(q1, q3, !q1 · !q3). (5.33)
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Most general local 3NF involves 89 operators, can be generated (by permutations) from 
22 structures: 

The generators are 
defined as:

4He 8Be 12C 16O

LO [Q0], in MeV −28.0(3) −57(2) −96(2) −144(4)
NLO [Q2], in MeV −24.9(5) −47(2) −77(3) −116(6)
NNLO [Q3], in MeV −28.3(6) −55(2) −92(3) −135(6)
Experiment, in MeV −28.30 −56.5 −92.2 −127.6

V3N =
22�

i=1

Gi Fi(r12, r23, r31) + perm. (1)

c3 ∼ −5 GeV−1

L = 11.8 fm

V2π =
�σ1 · �q1 �σ3 · �q3

[q21 +M2
π ] [q

2
3 +M2

π ]

�
τ 1 · τ 3 A(q2) + τ 1 × τ 3 · τ 2 �q1 × �q3 · �σ2 B(q2)

�

A(3)(q2) =
g2A
8F 4

π

�
(2c3 − 4c1)M

2
π + c3q

2
2

�
, B(3)(q2) =

g2Ac4
8F 4

π

,

A(4)(q2) =
g4A

256πF 6
π

�
A(q2)

�
2M4

π + 5M2
πq

2
2 + 2q42

�
+

�
4g2A + 1

�
M3

π + 2
�
g2A + 1

�
Mπq

2
2

�
,

B(4)(q2) = − g4A
256πF 6

π

�
A(q2)

�
4M2

π + q22
�
+ (2g2A + 1)Mπ

�

A(5)(q2) =
gA

4608π2F 6
π

�
M2

πq
2
2(F

2
π

�
2304π2gA(4ē14 + 2ē19 − ē22 − ē36)− 2304π2d̄18c3

�

+ gA(144c1 − 53c2 − 90c3)) +M4
π

�
F 2
π

�
4608π2d̄18(2c1 − c3) + 4608π2gA(2ē14 + 2ē19 − ē36 − 4ē38)

�

+ gA
�
72

�
64π2l̄3 + 1

�
c1 − 24c2 − 36c3

��
+ q42

�
2304π2ē14F

2
πgA − 2gA(5c2 + 18c3)

� �

− g2A
768π2F 6

π

L(q2)
�
M2

π + 2q22
� �

4M2
π(6c1 − c2 − 3c3) + q22(−c2 − 6c3)

�
,

B(5)(q2) = − gA
2304π2F 6

π

�
M2

π

�
F 2
π

�
1152π2d̄18c4 − 1152π2gA(2ē17 + 2ē21 − ē37)

�
+ 108g3Ac4 + 24gAc4

�

+ q22
�
5gAc4 − 1152π2ē17F

2
πgA

� �
+

g2Ac4
384π2F 6

π

L(q2)
�
4M2

π + q22
�

�p1 �p1
� �p2 �p2

� �p3 �p3
�

V loc.
3N =

22�

i=1

Gi Fi(r12, r23, r31) + 5 perm..

G1 = 1 , G2 = τ 1 · τ 2 , G3 = �σ1 · �σ3, . . .

1

calculated in ChPT; long-range 
terms parameter free...
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Generators G of 89 independent operators S A G1 G2 G1(12) G2(12)

1 O1 0 0 0 0 0

τ 1 · τ 2 O2 0 O3 O4 O3 O4

!σ1 · !σ3 O5 0 O6 O7 − 1
2O6 − 1

2O7

τ 1 · τ 3!σ1 · !σ3 O8 0 O9 O10 − 1
2O9 − 1

2O10

τ 2 · τ 3!σ1 · !σ2 O11 O12 O13 O14 O15 O16

τ 1 · (τ 2 × τ 3)!σ1 · (!σ2 × !σ3) O17 0 0 0 0 0

τ 1 · (τ 2 × τ 3)!σ2 · (!q1 × !q3) O18 0 O19 O20 − 1
2O19 − 1

2O20

!q1 · !σ1!q1 · !σ3 O21 O22 O23 O24 O25 O26

!q1 · !σ3!q3 · !σ1 O27 0 O28 O29 − 1
2O28 − 1

2O29

!q1 · !σ1!q3 · !σ3 O30 0 O31 O32 − 1
2O31 − 1

2O32

τ 2 · τ 3!q1 · !σ1!q1 · !σ2 O33 O34 O35 O36 O37 O38

τ 2 · τ 3!q1 · !σ1!q3 · !σ2 O39 O40 O41 O42 O43 O44

τ 2 · τ 3!q3 · !σ1!q1 · !σ2 O45 O46 O47 O48 O49 O50

τ 2 · τ 3!q3 · !σ1!q3 · !σ2 O51 O52 O53 O54 O55 O56

τ 2 · τ 3!q1 · !σ2!q1 · !σ3 O57 0 O58 O59 −2O58 −2O59

τ 2 · τ 3!q3 · !σ2!q3 · !σ3 O60 O61 O62 O63 O64 O65

τ 2 · τ 3!q1 · !σ2!q3 · !σ3 O66 −O61 O67 O68 −2O62 −O64 − 2O67 −2O63 −O65 − 2O68

τ 1 · (τ 2 × τ 3)!σ1 · !σ2!σ3 · (!q1 × !q3) O69 0 O70 O71 O70 O71

τ 1 · (τ 2 × τ 3)!σ3 · !q1!q1 · (!σ1 × !σ2) O72 O73 O74 O75 O76 O77

τ 1 · (τ 2 × τ 3)!σ1 · !q1!σ2 · !q1!σ3 · (!q1 × !q3) O78 O79 O80 O81 O82 O83

τ 1 · (τ 2 × τ 3)!σ1 · !q3!σ2 · !q3!σ3 · (!q1 × !q3) O84 0 O85 O86 O85 O86

τ 1 · (τ 2 × τ 3)!σ1 · !q1!σ2 · !q3!σ3 · (!q1 × !q3) O87 −O79 O88 O89 O80 −O82 +O88 O81 −O83 +O89

TABLE I: 22 operators G1, . . . ,G22 generate operators O1, . . . , O89 . The operators Oi are generated by application of one of the
6 functions S,A,G1, G2, G1(12), G2(12) on one of Gj ’s: e.g. O2 = S(G2 = τ 1 · τ 2), O3 = G1(G2 = τ 1 · τ 2) etc. By application
of these six functions on generators Gi either a set of linearly independent operators Oi, denoted by bold symbols (red bold
online), is produced or a set of linear combinations of these operators is produced.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

κ(i) 5 8 11 12 13 14 16 19 20 2 3 4 7 9 10 15 17 18 21 22 1 6

TABLE II: Definition of index function κ.

we decompose the full sum into

89
∑

i=1

OiFi =
22
∑

i=1

Kκ(i) SGκ(i) +
9

∑

i=1

Lκ(i) AGκ(i) +
20
∑

i=1

2
∑

j=1

M j
κ(i)GjGκ(i) +

9
∑

i=1

2
∑

j=1

N j
κ(i)Gj(12)Gκ(i). (5.37)

Here the structure functions Fi,Ki, Li,M
j
i and N j

i depend on q1, q3 and !q1 · !q3. The index function κ is defined in
Table II. Let us first discuss the permutation behaviour of the four structures on the right side of Eq. 5.37: Let
P ∈ S3 be some permutation.

1. Consider Kκ(i)SGκ(i) for an arbitrary i = 1, . . . , 22:

P (Kκ(i)SGκ(i)) = (PKκ(i))PSGκ(i) = (PKκ(i))SGκ(i). (5.38)

2. Consider Lκ(i)AGκ(i) for an arbitrary i = 1, . . . , 9:

P (Lκ(i)AGκ(i)) = (PLκ(i))PAGκ(i) = (PLκ(i))(−1)PAGκ(i). (5.39)

3. Consider
∑2

j=1 M
j
κ(i)GjGκ(i) for an arbitrary i = 1, . . . , 20:

P





2
∑

j=1

M j
κ(i)GjGκ(i)



 =
2

∑

j=1

(

2
∑

k=1

(PMk
κ(i))D(P )k,j

)

GjGκ(i) : (5.40)

n

p

n

r12

r31

r23



 

 3N force: Where do we stand



 Leading chiral 3NF and 3N/4N continuum 

p-3He differential cross section Ay-puzzle in p-3He elastic scattering
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Fig. 5. p − 3He differential cross sections calculated with the I-N3LO (blue dashed line), the I-N3LO/N-N2LO (blue solid line), and
the AV18/UIX (thin green solid line) interaction models for three different incident proton energies. The experimental data are from
Refs. [34,35,36].
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Viviani et al., 
arXiv:1004.1306

Nd scattering: accurate description at low energy except for 
Ay-puzzle (fine tuned) and some breakup configurations

Uncertainty grows rapidly with energy (higher orders ?) 

4N continuum: an emerging field...
2 LECs tuned to few-N data

(e.g. 3H, 4He BEs)



 
Ab initio methods (NCSM, GFMC, CCM, Lattice, ...) + renormalization ideas (SRG, Vlow-k, UCOM) 
+ computational resources             precision ab initio nuclear structure calculations 

3

two 1+0 states is exchanged depending on cD. Using ex-
trapolation, we can see that the best overall description
is obtained around the cD ≈ −1. This observation is also
supported by excitation energy calculations as well as
by calculations of other transitions. We therefore select
cD = −1 and, from Fig. 1, cE = −0.346 for our further
investigation.

We present in Fig. 3 the excitation spectra of 11B as
a function of Nmax for both the chiral NN+NNN, (top
panel) as well as with the chiral NN interaction alone
(bottom panel). In both cases, the convergence with in-
creasing Nmax is quite good especially for the lowest-lying
states. Similar convergence rates are obtained for our
other p−shell nuclei.
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FIG. 4: States dominated by p-shell configurations for 10B,
11B, 12C, and 13C calculated at Nmax = 6 using !Ω = 15 MeV
(14 MeV for 10B). Most of the eigenstates are isospin T=0 or
1/2, the isospin label is explicitly shown only for states with
T=1 or 3/2. The excitation energy scales are in MeV.

We display in Fig. 4 the natural parity excitation spec-
tra of four nuclei in the middle of the p−shell with both
the NN and the NN+NNN effective interactions from
ChPT. The results shown are obtained in the largest
basis spaces achieved to date for these nuclei with the
NNN interactions, Nmax = 6 (6!Ω). Overall, the NNN
interaction contributes significantly to improve theory
in comparison with experiment. This is especially well-
demonstrated in the odd mass nuclei for the lowest few
excited states. The celebrated case of the ground state
spin of 10B and its sensitivity to the presence of the NNN
interaction is clearly evident. There is an initial indica-
tion in these spectra that the chiral NNN interaction is
“over-correcting” the inadequacies of the NN interaction
since, e.g. 1+0 and the 4+0 states in 12C are not only in-
terchanged but they are also spread apart more than the
experimentally observed separation. While these results
display a favorable trend with the addition of NNN in-
teraction, there is room for additional improvement and
we discuss the possibilities below.

These results required substantial computer resources.
A typical Nmax = 6 spectrum shown in Fig. 4 and a

set of additional experimental observables, takes 4 hours
on 3500 processors of the LLNL’s Thunder machine. We
present only an illustrative subset of our results here.

Table I contains selected experimental and theoretical
results for 6Li and A = 10 − 13. A total of 71 experi-
mental data are summarized in this table including the
excitation energies of 28 states encapsulated in the rms
energy deviations. Note that the only case of an increase
in the rms energy deviation with inclusion of NNN inter-
action is 13C and it arises due to the upward shift of the
7
2

−

state seen in Fig. 4, an indication of an overly strong
correction arising from the chiral NNN interaction. How-
ever, the experimental 7

2

−

may have significant intruder
components and is not well-matched with our state.

We demonstrated here that the chiral NNN interaction
makes substantial contributions to improving the spectra
and other observables. However, there is room for further
improvement in comparison with experiment. We stress
that we used a strength of the 2π-exchange piece of the
NNN interaction, which is consistent with the NN inter-
action that we employed. Since this strength is some-

NCSM calculation of p-shell nuclei with chiral 2NF+3NF Navratil et al. ʼ07

sensitive to details of the 3NF 

still room for improvement and some open questions              higher-order 3NFs... 
many promising results (neutron-rich nuclei, long lifetime of 14C, neutron star radii, ...)

Leading chiral 3NF and nuclear structure

Barrett, Navratil, Nogga, Roth, Schwenk, Hebeler, Furnstahl, Vary, Ormand, ...



 

 3N force beyond leading order
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3NF topologies up to N4LO (subleading one-loop order)

Q3 [N2LO] + Q4 [N3LO] + Q5 [N4LO] + ... Q4 [N3LO] + Q5 [N4LO] + ...
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The leading corrections (N3LO) have been worked out recently
Ishikawa, Robilotta, PRC76 (07);  Bernard, EE, Krebs, Meißner, PRC77 (08);  PRC84 (11)

partial wave decomposition is still in progress 
      - the technology for numerical PWD has been developed 
      - calculations presently running at JUROPA@FZJ, OSC@OhioState,...
      - estimated need: ~ 10.000.000 CPU hours 

Skibinski et al., PRC84 (11)

 3N force: corrections beyond LO

 parameter-free!
rich spin-momentum structure, especially from the ring diagrams 

N2LO contributions (leading 3NF) nowadays included in most few-/many-body calculations



  3N force: corrections beyond LO

!!

Ay-puzzle in elastic nd scattering
Witala et al. Proceedings of Few Body 204
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Fig. 2 (color online) The neutron analyzing power Ay in elastic nd scattering. In the left
column the light shaded (green) band shows predictions of N3LO chiral NN potentials alone
and the dark shaded (magenta) band when they are combined with N2LO chiral 3NF. In the
right column the N3LO chiral forces (green band) are combined with N3LO 3NF composed
of 1π-exchange-contact and purely contact terms supplemented with long-range terms: 2π-
exchange (yellow band), 2π- and 2π−1π-exchange (blue band), and 2π- and 2π−1π-exchange
and ring (magenta band). The nd data (full circles) are from [6].

The measurement of QFS np cross sections have shown good agreement of data with
theory [9], confirming thus good knowledge of the np force. For nn QFS it was found
that theory underestimates the data by ≈ 20% [9]. The large stability of the QFS cross
sections to the underlying dynamics, implies that the present day 1S0 nn interaction is
probably incorrect. Modifications of the 1S0 nn force by multiplying its matrix elements
by a factor λ lead to large changes of the nn QFS cross sections, leaving the np ones
practically unchanged [10–12]. To remove the discrepancy found in experiment for nn
QFS one needs to increase λ by about 8%. Such increased strength of the 1S0 nn force
leads to a nearly bound 1S0 state of two neutrons [11,12]. That raises the question to
what extent is the existence of 1S0 dineutron compatible with available nd data ? It
turns out that the total nd cross section data, total nd elastic scattering cross section
and total nd breakup cross section seem not to exclude two neutrons being bound with
a ≈ −100 keV binding energy [12]. The dineutron influences the nd elastic scattering
angular distribution only at forward angles, changing the slope of the cross section.
No reliable data at these angles are available [12]. The strongest argument against
dineutron is provided by four measured nn final-state interaction (FSI) configurations
[13]. Their analysis gave consistent negative values for the nn scattering length. It
seems that with a positive scattering length one would get nn scattering length values
which are configuration dependent. Changing to positive nn scattering lengths reduces
drastically the magnitude of the FSI peak at large proton energy in the spectra of
protons from incomplete nd breakup. Integrating the experimental peak provides an
angular distribution for n + d → p + dineutron transition. Comparing it to theoretical
values excludes binding energies for dineutron larger in magnitude than ≈ 100 keV
(see Fig.3).

The most favorable conditions to detect a dineutron would exist when two neutrons
mostly occupy the 1S0 state. Such a situation is provided by the 3H nucleus and
the γ(3H,p)nn reaction seems to be advantageous in searching for a dineutron. The

!"#$%!!%&%!'#$%"!(
!"#$%!!

!"#$%!!%&%!'#$%"!(

"#$%&'()*+,-'.'/'0123'00'4'0!23'105'4'0123'105'67π89:*&;<'4'0123'105'69:*&;<
'/'.'4'0123'105'6!π-exch.)

'/'.'4'0123'105'6!π-exch. & 2π-1π-exch.)

'/'.'4'0123'105'6!π-exch. & 2π-1π-exch. & ring)

=*9:>(,+&+'?+@A,&@-'0123'105'6!π89:*&;'B'7C>89:??;<')?+'>#@@#*$

Impact of some of the N3LO 3NF terms on nd Ay (incomplete)
Witala et al., in proceedings of FB20

N3LO corrections seem to be rather small, 
chiral expansion of the 3NF is NOT yet converged             need to go to higher orders...



 
3NF: chiral expansion of the 
         longest-range piece (2π)
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 Two-pion exchange 3NF up to N4LO
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FIG. 2: Two-pion exchange 3N diagrams at N3LO. Solid dots (filled rectangles) denote vertices of dimension ∆i = 0 (∆i = 2).
Diagrams which result from the interchange of the nucleon lines and/or application of the time reversal operation are not
shown. For remaining notation see Fig. 1.

(1), (2), (4), (8), (10), (30-32), (34) and (35) just renormalize the external nucleon legs. Similarly, Feynman diagrams
(3), (9), (22-24), (26-28) lead to renormalization of the leading pion-nucleon coupling without producing any new
structures. All these contributions are taken into account by replacing the bare LECs in the leading 2π exchange 3N
scattering amplitude by renormalized ones. This suggests that there are no N3LO corrections to the 3NF from these
graphs since the 2π exchange 3N diagrams at order ν = 2 do not generate any nonvanishing 3NF. Given the fact
that nuclear potentials are, in general, not uniquely defined, the above argument based on the (on-shell) scattering
amplitude should be taken with care. We have, however, verified that this is indeed the case by explicitly calculating
the corresponding 3NF using the method of unitary transformation along the lines of Ref. [23]. From the remaining
graphs in Fig. 2, diagram (11) does not contribute at the considered order due to the 1/m-suppression caused by the
time derivative entering the Weinberg-Tomozawa vertex.3 For the same reason, diagram (25) also leads to a vanishing
result at the order considered. Here, the time derivative acts either on the pions exchanged between two nucleons
leading to a 1/m-suppression or on the pion in the tadpole giving an odd power of the loop momentum l0 to be

3 This graph does not involve reducible time-ordered topologies. Its contribution to the nuclear force is, therefore, most easily obtained
using the Feynman graph technique. The 1/m-suppression from the time derivative entering the Weinberg-Tomozawa vertex follows
then simply from the four-momentum conservation.
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leading to a 1/m-suppression or on the pion in the tadpole giving an odd power of the loop momentum l0 to be

3 This graph does not involve reducible time-ordered topologies. Its contribution to the nuclear force is, therefore, most easily obtained
using the Feynman graph technique. The 1/m-suppression from the time derivative entering the Weinberg-Tomozawa vertex follows
then simply from the four-momentum conservation.
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(1), (2), (4), (8), (10), (30-32), (34) and (35) just renormalize the external nucleon legs. Similarly, Feynman diagrams
(3), (9), (22-24), (26-28) lead to renormalization of the leading pion-nucleon coupling without producing any new
structures. All these contributions are taken into account by replacing the bare LECs in the leading 2π exchange 3N
scattering amplitude by renormalized ones. This suggests that there are no N3LO corrections to the 3NF from these
graphs since the 2π exchange 3N diagrams at order ν = 2 do not generate any nonvanishing 3NF. Given the fact
that nuclear potentials are, in general, not uniquely defined, the above argument based on the (on-shell) scattering
amplitude should be taken with care. We have, however, verified that this is indeed the case by explicitly calculating
the corresponding 3NF using the method of unitary transformation along the lines of Ref. [23]. From the remaining
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Notice that the leading-loop contributions to the 2π-exchange topology do not contain logarithmic ultraviolet diver-

gences and, as explained in Ref. [15], turn out to be independent from the LECs di entering L(3)
πN . At both N2LO

and N3LO, all LECs in the effective Lagrangian entering the expressions for the 3NF – including gA and Fπ – can be
simply replaced by their physical values.

We further emphasize that, as already mentioned above, the expressions in Eq. (3.6) differ from the ones in Eq. (2.9)
of Ref. [15] by terms of a shorter range as compared to the two-pion exchange contributions. The advantage of using
the new notation is that the results for A and B are now α-independent. This was not the case for terms in Eq. (2.9)
of Ref. [15] where the results are given for a specific choice α = 0.

Last but not least, we emphasize that relativistic corrections to V2π have a richer structure than the one given in
Eq. (3.3). The explicit form of the 1/m-corrections to V2π at N3LO can be found in Ref. [16], see also [35] for an early
work.

B. N4LO contributions

We now turn to the sub-subleading contributions to the 2π-exchange 3NF at order Q5 (N4LO). These are depicted
in Fig. 2 and emerge from:

• one-loop diagrams (1)-(15) constructed from the leading-order vertices from L(1)
πN and a single insertion of a

subleading vertex ∝ ci,

• tree diagram (16) involving leading-order vertices from L(1)
πN and a single insertion of a vertex from L(4)
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where li, di and C̃i denote further LECs and
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m is the

nucleon mass in the chiral limit. The ellipses in the pion
and pion-nucleon Lagrangians refer to terms which do
not contribute to the nuclear force at NLO. In the case
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NN only a few terms
are given explicitly. The complete reparametrization-
invariant set of terms can be found in (148). The NLO
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where the ellipses refer to higher-order terms. Similarly,
loop diagrams involving NN short-range interactions only
lead to (Mπ-dependent) shifts in the LO contact terms.
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where q ≡ |"q | and the LECs Ci can be written as lin-
ear combinations of C̃i in Eq. (2.12). The loop function

LΛ̃(q) is defined in the spectral function regularization
(SFR) (155; 156) as

LΛ̃(q) = θ(Λ̃ − 2Mπ)
ω

2q
ln

Λ̃2ω2 + q2s2 + 2Λ̃qωs

4M2
π(Λ̃2 + q2)

,

(2.15)
where we have introduced the following abbreviations:

ω =
√

4M2
π + "q 2 and s =

√

Λ̃2 − 4M2
π . Here, Λ̃ denotes

Next!to!leading order

Next!to!next!to!leading order

Next!to!next!to!next!to!leading order

FIG. 13 Chiral expansion of the three-nucleon force up to
N3LO. Diagrams in the first line (NLO) yield vanishing con-
tributions to the 3NF if one uses energy-independent for-
mulations as explained in the text. The five topologies
at N3LO involve the two-pion exchange, one-pion-two-pion-
exchange, ring, contact-one-pion exchange and contact-two-
pion-exchange diagrams in order. Shaded blobs represent
the corresponding amplitudes. For remaining notation see
Fig. 12.

the ultraviolet cutoff in the mass spectrum of the two-
pion-exchange potential. If dimensional regularization
(DR) is employed, the expression for the loop function
simplifies to

L(q) = lim
Λ̃→∞

LΛ̃(q) =
ω

q
ln

ω + q

2Mπ
. (2.16)

In addition to the two-nucleon contributions, at NLO
one also needs to consider three-nucleon diagrams shown
in the first line of Fig. 13. The first diagram does not in-
volve reducible topologies and, therefore, can be dealt
with using the Feynman graph technique. It is then
easy to verify that its contribution is shifted to higher
orders due to the additional suppression by the factor
of 1/m caused by the appearance of time derivative at
the leading-order ππN̄N vertex, the so-called Weinberg-
Tomozawa vertex. The two remeining diagrams have
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2
πgA

� �
+

g2Ac4
384π2F 6

π

L(q2)
�
4M2

π + q22
�

�p1 �p1
� �p2 �p2

� �p3 �p3
�

1

V2π =
�σ1 · �q1 �σ3 · �q3

[q21 +M2
π ] [q

2
3 +M2

π ]

�
τ 1 · τ 3 A(q2) + τ 1 × τ 3 · τ 2 �q1 × �q3 · �σ2 B(q2)

�

A(3)(q2) =
g2A
8F 4

π

�
(2c3 − 4c1)M

2
π + c3q

2
2

�
, B(3)(q2) =

g2Ac4
8F 4

π

,

A(4)(q2) =
g4A

256πF 6
π

�
A(q2)

�
2M4

π + 5M2
πq

2
2 + 2q42

�
+

�
4g2A + 1

�
M3

π + 2
�
g2A + 1

�
Mπq

2
2

�
,

B(4)(q2) = − g4A
256πF 6

π

�
A(q2)

�
4M2

π + q22
�
+ (2g2A + 1)Mπ

�

A(5)(q2) =
gA

4608π2F 6
π

�
M2

πq
2
2(F

2
π

�
2304π2gA(4ē14 + 2ē19 − ē22 − ē36)− 2304π2d̄18c3

�

+ gA(144c1 − 53c2 − 90c3)) +M4
π

�
F 2
π

�
4608π2d̄18(2c1 − c3) + 4608π2gA(2ē14 + 2ē19 − ē36 − 4ē38)
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2
πgA

� �
+

g2Ac4
384π2F 6

π

L(q2)
�
4M2

π + q22
�

�p1 �p1
� �p2 �p2

� �p3 �p3
�

1

V2π =
�σ1 · �q1 �σ3 · �q3

[q21 +M2
π ] [q

2
3 +M2

π ]

�
τ 1 · τ 3 A(q2) + τ 1 × τ 3 · τ 2 �q1 × �q3 · �σ2 B(q2)

�

A(3)(q2) =
g2A
8F 4

π

�
(2c3 − 4c1)M

2
π + c3q

2
2

�
, B(3)(q2) =

g2Ac4
8F 4

π

,

A(4)(q2) =
g4A

256πF 6
π

�
A(q2)

�
2M4

π + 5M2
πq

2
2 + 2q42

�
+

�
4g2A + 1

�
M3

π + 2
�
g2A + 1

�
Mπq

2
2

�
,

B(4)(q2) = − g4A
256πF 6

π

�
A(q2)

�
4M2

π + q22
�
+ (2g2A + 1)Mπ

�

A(5)(q2) =
gA

4608π2F 6
π

�
M2

πq
2
2(F

2
π

�
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FIG. 3: Results of the fit for πN s, p and d-wave phase shifts using the GW partial wave analysis of Ref. [56]. The solid curves
correspond to the full Q4 results, the dashed curves to the order-Q3 results, and the dashed-dotted curves to the order-Q2

calculation.

which reflects the absence of inelasticity below the two-pion production threshold.

We performed a combined fit for all s-, p-, and d-waves since d-waves are the highest partial waves where the order-Q4

counter terms contribute. The results of the fits using the GW and KH partial wave analyses are visualized in Figs. 3
and 4, respectively. In these figures we show the full, order-Q4 results (solid curves) as well as the phase shifts
calculated up to the order Q3 (dashed curves) and Q2 (dashed-dotted curves) using the same parameters (from the
order-Q4 fit) in all curves. In the fitted region (from threshold up to pLab = 150 MeV/c), a good description of the
data is achieved. As one would expect the convergence pattern when going from Q2 to Q4 is getting worse with
increasing the pion momenta. Interestingly, the d-waves are rather well reproduced already at the order Q3 where
there are no counter terms or other contributions depending on free parameters. Both the tree-level and finite loop
contributions are important for those four partial waves. Our results for the phase shifts are similar and of a similar
quality as the ones reported in Ref. [45].

We finally turn to the discussion of the extracted parameters. The obtained values of the low energy constants are
collected in Table I. As one can see from the table, the LECs ci and d̄i turn out to come out rather similar for the
two partial wave analyses. The difference does not exceed 30% except for the LECs c1 and d̄5 which are, however,
considerably smaller than the other ci’s and d̄i’s, respectively. The same conclusion about stability can be drawn for
the LECs ē14 and ē17. These are the only counter terms contributing to d-waves, which is why these two constants
are strongly constrained by the threshold behavior of the d-wave phase shifts. In contrast, the other ēi’s are very
sensitive to the energy dependence of the s- and p-wave amplitudes and, therefore, vary strongly from one analysis to
another. Notice, however, that all extracted constants are of a natural size except for the combination d̄14 − d̄15 and
ē15 which appear to be somewhat large.

We stress that one cannot directly compare the LECs d̄i and ēi from of our fits to the ones obtained in Refs. [32],[45]

Two-pion exchange 3NF up to N4LO
πN phase shifts in HB ChPT up to Q4 (KH PWA)

Krebs, Gasparyan, EE ʼ12
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FIG. 5: Chiral expansion of the functions A(q2) and B(q2) entering the two-pion exchange 3NF in Eq. (3.3) up to N4LO. Left
(right) panel shows the results obtained with the LECs determined from the order-Q4 fit to the pion-nucleon partial wave
analysis of Ref. [57] (Ref. [56]) and listed in Table I. Dashed, dashed-dotted and solid lines correspond to A

(3), A(3) +A
(4) and

A
(3) +A

(4) +A
(5) in the upper plots while B

(3), B(3) + B
(4) and B

(3) + B
(4) + B

(5) in the lower plots.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the longest-range contribution to the three-nucleon force at N4LO utilizing the heavy-
baryon formulation of chiral EFT with pions and nucleons as the only explicit degrees of freedom. For this particular
topology, the N4LO corrections already provide the sub-subleading contribution, so that one can address the question
of convergence of the chiral expansion. The pertinent results of our study can be summarized as follows.

• We worked out the N4LO contributions to the 2π-exchange 3NF. The unitary ambiguity of the Hamilton
operator can be parametrized at this order by three additional unitary transformations. We found that two
of the corresponding “rotation angles”, namely α10 and α11, are fixed in terms of the remaining one α9 if one
requires that the resulting 3NF matrix elements are finite (renormalizability constraint). The parameter α9

does not enter the expressions for the 3NF at N4LO. These findings will impact the results for the remaining
3NF contributions which are not considered in this paper.

• In order to determine the low-energy constants ci, d̄i and ēi contributing to the 2π-exchange 3NF, we re-analyzed
pion-nucleon scattering at order Q4 employing exactly the same power counting scheme as in the derivation of
the nuclear forces. We used the available partial wave analyses of the pion-nucleon scattering data to determine
all relevant LECs. The resulting values turn out to be rather stable and agree well with the determinations by
other groups.

• With all LECs being fixed from pion-nucleon scattering as discussed above, we found a good/reasonable con-

3NF „structure functions“

1

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 − d̄15 ē14 ē15 ē16 ē17 ē18

Q
4
fit to KH −0.75 3.49 −4.77 3.34 6.21 −6.83 0.78 −12.02 1.52 −10.41 6.08 −0.37 3.26

Q4
+ �3 fit to KH −0.91 1.58 −2.03 1.28 2.35 −3.88 1.23 −5.26 −0.14 −6.52 2.45 −0.37 2.96

c1 c2 c3 c4 d̄1 + d̄2 d̄3 d̄5 d̄14 − d̄15 ē14 ē15 ē16 ē17 ē18

Q4
fit to GW −1.13 3.69 −5.51 3.71 5.57 −5.35 0.02 −10.26 1.75 −5.80 1.76 −0.58 0.96

Q4
fit to KH −0.75 3.49 −4.77 3.34 6.21 −6.83 0.78 −12.02 1.52 −10.41 6.08 −0.37 3.26

Q3

Q2
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the longest-range contribution to the three-nucleon force at N4LO utilizing the heavy-
baryon formulation of chiral EFT with pions and nucleons as the only explicit degrees of freedom. For this particular
topology, the N4LO corrections already provide the sub-subleading contribution, so that one can address the question
of convergence of the chiral expansion. The pertinent results of our study can be summarized as follows.

• We worked out the N4LO contributions to the 2π-exchange 3NF. The unitary ambiguity of the Hamilton
operator can be parametrized at this order by three additional unitary transformations. We found that two
of the corresponding “rotation angles”, namely α10 and α11, are fixed in terms of the remaining one α9 if one
requires that the resulting 3NF matrix elements are finite (renormalizability constraint). The parameter α9

does not enter the expressions for the 3NF at N4LO. These findings will impact the results for the remaining
3NF contributions which are not considered in this paper.

• In order to determine the low-energy constants ci, d̄i and ēi contributing to the 2π-exchange 3NF, we re-analyzed
pion-nucleon scattering at order Q4 employing exactly the same power counting scheme as in the derivation of
the nuclear forces. We used the available partial wave analyses of the pion-nucleon scattering data to determine
all relevant LECs. The resulting values turn out to be rather stable and agree well with the determinations by
other groups.

• With all LECs being fixed from pion-nucleon scattering as discussed above, we found a good/reasonable con-
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FIG. 3: 2π-1π diagrams at N3LO. Graphs resulting from the interchange of the nucleon lines are not shown. For notation see
Figs. 1, 2.

It should be understood that the obtained expressions are only valid in the region of space where the interparticle
distances are large (i.e. larger than the inverse pion mass). The behavior of the potential at shorter distances is, in
general, affected by the regularization procedure which is not considered in the present work.

To obtain the coordinate space representation for the terms in Eq. (2.9) which involve the loop function A(q2), it is
more convenient to proceed in a different way in order to avoid a complicated angular integration:

V2π(!r12, !r32 ) =

∫

d3q1

(2π)3
d3q2

(2π)3
d3q3

(2π)3
(2π)3δ3(!q1 + !q2 + !q3 ) ei"q1·"r1 ei"q2·"r2 ei"q3·"r3 V2π(!q1, !q2, !q3)

=

∫

d3r0

∫

d3q1

(2π)3
d3q2

(2π)3
d3q3

(2π)3
ei"q1·"r10 ei"q2·"r20 ei"q3·"r30 V2π(!q1, !q2, !q3)

= −
g4

AM7
π

4096π3F 6
π

!σ1 · !∇12 !σ3 · !∇32

[

τ 1 · τ 3 (2 −∇2
12 −∇2

32 − 2!∇12 · !∇32)(3 − 3∇2
12 − 3∇2

32 − 4!∇12 · !∇32)

+ τ 1 × τ 3 · τ 2
!∇12 × !∇32 · !σ2 (4 −∇2

12 −∇2
32 − 2!∇12 · !∇32)

]

×
1

4π

∫

d3xU1(|!x12 + !x |) W1(x) U1(|!x32 + !x |) , (2.14)

where

W1(x) =
4π

M2
π

∫

d3q

(2π)3
ei"q·"x/Mπ A(q) =

e−2x

2x2
. (2.15)

For various techniques to evaluate the integral in the last line of Eq. (2.14) the reader is referred to Ref. [15].

(10)(6) (7)

(5)(4)(3)(2)(1)
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FIG. 4: Ring diagrams at N3LO. Graphs resulting from the interchange of the nucleon lines are not shown. For notation see
Figs. 1, 2.

with

W2(x) = −∇2
xW1(x) = −

e−2x

x4
(1 + 2x(1 + x)) ,

W3(x) =
4π

M2
π

∫

d3q

(2π)3
ei"q·"x/Mπ

[

Mπ

q2
−

4M2
π

q2
A(q)

]

= 2Ei(−2x) +
e−2x

x
, (2.22)

and

Ei(x) ≡ −

∫ ∞

−x

e−t dt

t
. (2.23)

We emphasize again that the above expressions are only valid at large distances.

C. Ring diagrams

We now regard ring diagrams shown in Fig. 4 which correspond to topology (c) in Fig. 1. These are most cumbersome
to evaluate. The contributions from the first two diagrams can be obtained using the expressions for the effective
Hamilton operator given in Ref. [23]. This leads to the following structures:

V 1
ring = M1

[

4

ω3
a ωb ωc

+
4

ωa ω3
b ωc

−
4

ωa ωb ω3
c

]

,

V 2
ring = M2

[

−
4

ω3
a ωb ωc

−
4

ωa ω3
b ωc

−
4

ωa ωb ω3
c

]

, (2.24)

where M i represents the spin, isospin and momentum structure which results from the vertices entering the diagram
i and ω denotes the pion free energy, ω ≡

√

q2 + M2
π . Substituting the expressions for the vertices, the result can be

written in the form

Vring =

(

gA

2Fπ

)6 1

(2π)3

∫

d3l1 d3l2 d3l3 δ3($l3 −$l2 − $q1) δ3($l2 −$l1 − $q3)
v

[l21 + M2
π ] [l22 + M2

π]2 [l23 + M2
π ]

, (2.25)

with the numerator

v = −8τ 1 · τ 2
$l1 ×$l3 · $σ2

$l1 ×$l2 · $σ3
$l2 ·$l3 − 4τ 1 · τ 3

$l1 ·$l2 $l1 ·$l3 $l2 ·$l3 + 2τ 1 × τ 2 · τ 3
$l1 ×$l3 · $σ2

$l1 ·$l2 $l2 ·$l3
+ 6$l2 ×$l3 · $σ1

$l1 ×$l2 · $σ3
$l1 ·$l3 . (2.26)

Carrying out the two trivial integrations over, say, l1 and l2 leads to the standard three-point function integrals. The
latter can be evaluated but the resulting expressions are rather involved, see appendix A. It is more convenient to
evaluate Eq. (2.25) in configuration space using again the same definition as in the the first line of Eq. (2.11). This
leads to the following compact result:

Vring($r12, $r32 ) =

(
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2Fπ

)6 ∫
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(2π)3
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(2π)3
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π ]2 [l23 + M2
π ]
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FIG. 4: Ring diagrams at N3LO. Graphs resulting from the interchange of the nucleon lines are not shown. For notation see
Figs. 1, 2.

with

W2(x) = −∇2
xW1(x) = −

e−2x

x4
(1 + 2x(1 + x)) ,

W3(x) =
4π

M2
π

∫

d3q

(2π)3
ei"q·"x/Mπ

[

Mπ

q2
−

4M2
π

q2
A(q)

]

= 2Ei(−2x) +
e−2x

x
, (2.22)

and

Ei(x) ≡ −

∫ ∞

−x

e−t dt

t
. (2.23)

We emphasize again that the above expressions are only valid at large distances.

C. Ring diagrams

We now regard ring diagrams shown in Fig. 4 which correspond to topology (c) in Fig. 1. These are most cumbersome
to evaluate. The contributions from the first two diagrams can be obtained using the expressions for the effective
Hamilton operator given in Ref. [23]. This leads to the following structures:
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, (2.24)
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Carrying out the two trivial integrations over, say, l1 and l2 leads to the standard three-point function integrals. The
latter can be evaluated but the resulting expressions are rather involved, see appendix A. It is more convenient to
evaluate Eq. (2.25) in configuration space using again the same definition as in the the first line of Eq. (2.11). This
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FIG. 5: Chiral expansion of the functions A(q2) and B(q2) entering the two-pion exchange 3NF in Eq. (3.3) up to N4LO. Left
(right) panel shows the results obtained with the LECs determined from the order-Q4 fit to the pion-nucleon partial wave
analysis of Ref. [57] (Ref. [56]) and listed in Table I. Dashed, dashed-dotted and solid lines correspond to A
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(4) and
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(5) in the upper plots while B
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the longest-range contribution to the three-nucleon force at N4LO utilizing the heavy-
baryon formulation of chiral EFT with pions and nucleons as the only explicit degrees of freedom. For this particular
topology, the N4LO corrections already provide the sub-subleading contribution, so that one can address the question
of convergence of the chiral expansion. The pertinent results of our study can be summarized as follows.

• We worked out the N4LO contributions to the 2π-exchange 3NF. The unitary ambiguity of the Hamilton
operator can be parametrized at this order by three additional unitary transformations. We found that two
of the corresponding “rotation angles”, namely α10 and α11, are fixed in terms of the remaining one α9 if one
requires that the resulting 3NF matrix elements are finite (renormalizability constraint). The parameter α9

does not enter the expressions for the 3NF at N4LO. These findings will impact the results for the remaining
3NF contributions which are not considered in this paper.

• In order to determine the low-energy constants ci, d̄i and ēi contributing to the 2π-exchange 3NF, we re-analyzed
pion-nucleon scattering at order Q4 employing exactly the same power counting scheme as in the derivation of
the nuclear forces. We used the available partial wave analyses of the pion-nucleon scattering data to determine
all relevant LECs. The resulting values turn out to be rather stable and agree well with the determinations by
other groups.

• With all LECs being fixed from pion-nucleon scattering as discussed above, we found a good/reasonable con-

N3LO
N3LO+N4LO

13 structures out of 22... 
large N4LO contributions 
(as expected)
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed the longest-range contribution to the three-nucleon force at N4LO utilizing the heavy-
baryon formulation of chiral EFT with pions and nucleons as the only explicit degrees of freedom. For this particular
topology, the N4LO corrections already provide the sub-subleading contribution, so that one can address the question
of convergence of the chiral expansion. The pertinent results of our study can be summarized as follows.

• We worked out the N4LO contributions to the 2π-exchange 3NF. The unitary ambiguity of the Hamilton
operator can be parametrized at this order by three additional unitary transformations. We found that two
of the corresponding “rotation angles”, namely α10 and α11, are fixed in terms of the remaining one α9 if one
requires that the resulting 3NF matrix elements are finite (renormalizability constraint). The parameter α9

does not enter the expressions for the 3NF at N4LO. These findings will impact the results for the remaining
3NF contributions which are not considered in this paper.

• In order to determine the low-energy constants ci, d̄i and ēi contributing to the 2π-exchange 3NF, we re-analyzed
pion-nucleon scattering at order Q4 employing exactly the same power counting scheme as in the derivation of
the nuclear forces. We used the available partial wave analyses of the pion-nucleon scattering data to determine
all relevant LECs. The resulting values turn out to be rather stable and agree well with the determinations by
other groups.

• With all LECs being fixed from pion-nucleon scattering as discussed above, we found a good/reasonable con-
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4He 8Be 12C 16O

LO [Q0], in MeV −28.0(3) −57(2) −96(2) −144(4)
NLO [Q2], in MeV −24.9(5) −47(2) −77(3) −116(6)
NNLO [Q3], in MeV −28.3(6) −55(2) −92(3) −135(6)
Experiment, in MeV −28.30 −56.5 −92.2 −127.6

∼ 1
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2
πgA

� �
+

g2Ac4
384π2F 6

π

L(q2)
�
4M2

π + q22
�

1

include terms

but NOT

(Δ-saturation of c3, c4)N3LO
N4LO

1 1,5 2
-30

-20

-10

0 F1

2 2,5 3

-0,02

0
-30

-20

-10

0 F16

-0,02

-0,01

0

0,01

Chiral EFT with Δ(1232): 
(partial) resummation of terms:

4He 8Be 12C 16O

LO [Q0], in MeV −28.0(3) −57(2) −96(2) −144(4)
NLO [Q2], in MeV −24.9(5) −47(2) −77(3) −116(6)
NNLO [Q3], in MeV −28.3(6) −55(2) −92(3) −135(6)
Experiment, in MeV −28.30 −56.5 −92.2 −127.6
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N3LO-Δ

N4LO, resonance saturation
(only effects of the Δ)

N4LO-res.
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N4LO contributions still miss important physics of double and triple Δ-excitations
         it is more efficient to include Δ as an explicit DOF

there are indications that N3LO-Δ results for Fi already provide a good approximation 

intermediate and short-range topologies in progress...



 Summary and outlook
Towards high-precision chiral three-nucleon forces

technology to (numerically) carry out PWD for ANY 3NF has been developed
(but requires huge computational recources...) 

Future: determination of LECs in the short-range parts of the 3NF, effects of the
            novel structures in the 3N and 4N continuum and light nuclei, lots of 
            interesting physics...

3NF at N2LO: nowadays standard, promising results, room for improvement 

3NF at N3LO: work in progress (PWD, determination of D, E). First results 
indicate that N3LO corrections might be small; evidence for significant higher-
order contributions (2π-1π, ring)

3NF beyond N3LO: long-range terms (parameter-free) worked out completely 
at N4LO and N3LO-Δ (seems to be the most efficient approach); shorter-range 
contributions in progress


