# Status of the YN interaction in chiral EFT

#### Johann Haidenbauer

IAS & JCHP, Forschungszentrum Jülich, Germany

#### CRC110, Trento, December 5-6, 2013

・聞き ・ヨキ ・ヨキ

# **W** in chiral effective field theory

We follow the scheme of S. Weinberg (1990) in complete analogy to the study of *NN* in  $\chi$ EFT by E. Epelbaum et al.

#### Advantages:

Power counting

systematic improvement by going to higher order

- Possibility to derive two- and three baryon forces and external current operators in a consistent way
- Obstacle: YN data base is rather poor
  - about 35 data points, all from the 1960s
  - 10 data points from the KEK-PS E251 collaboration (1999-2005) (cf. > 4000 NN data for E<sub>lab</sub> < 350 MeV!)</li>
  - constraints from hypernuclei
  - no polarization data  $\Rightarrow$  no phase shift analysis
    - $\rightarrow$  impose  $SU(3)_f$  constraints

ヘロン 人間 とくほとくほとう

## Power counting

$$V_{\mathrm{eff}} \equiv V_{\mathrm{eff}}(\boldsymbol{Q},\boldsymbol{g},\mu) = \sum_{\nu} (\boldsymbol{Q}/\Lambda)^{
u} \, \mathcal{V}_{
u}(\boldsymbol{Q}/\mu,\boldsymbol{g})$$

- *Q*... soft scale (baryon three-momentum, Goldstone boson four-momentum, Goldstone boson mass)
- Λ ... hard scale
- g ... pertinent low–energy constants
- $\mu$  ... regularization scale
- $\mathcal{V}_{\nu}$  ... function of order one
- $\nu \ge 0$  ... chiral power

#### Leading order (LO): $\nu = 0$

- a) non-derivative four-baryon contact terms
- b) one-meson (Goldstone boson) exchange diagrams

Next-to-leading order (NLO):  $\nu = 2$ 

- a) four-baryon contact terms with two derivatives
- b) two-meson (Goldstone boson) exchange diagrams

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

### Contact terms for BB

e.g., LO contact terms for BB:

$$\begin{split} \mathcal{L} &= \boldsymbol{C}_{i}\left(\bar{\boldsymbol{N}}\boldsymbol{\Gamma}_{i}\boldsymbol{N}\right)\left(\bar{\boldsymbol{N}}\boldsymbol{\Gamma}_{i}\boldsymbol{N}\right) \; \Rightarrow \; \mathcal{L}^{1} = \tilde{\boldsymbol{C}}_{i}^{1}\left\langle\bar{\boldsymbol{B}}_{a}\bar{\boldsymbol{B}}_{b}\left(\boldsymbol{\Gamma}_{i}\boldsymbol{B}\right)_{b}\left(\boldsymbol{\Gamma}_{i}\boldsymbol{B}\right)_{a}\right\rangle, \\ \mathcal{L}^{2} &= \tilde{\boldsymbol{C}}_{i}^{2}\left\langle\bar{\boldsymbol{B}}_{a}\left(\boldsymbol{\Gamma}_{i}\boldsymbol{B}\right)_{a}\bar{\boldsymbol{B}}_{b}\left(\boldsymbol{\Gamma}_{i}\boldsymbol{B}\right)_{b}\right\rangle, \\ \mathcal{L}^{3} &= \tilde{\boldsymbol{C}}_{i}^{3}\left\langle\bar{\boldsymbol{B}}_{a}\left(\boldsymbol{\Gamma}_{i}\boldsymbol{B}\right)_{a}\right\rangle\left\langle\bar{\boldsymbol{B}}_{b}\left(\boldsymbol{\Gamma}_{i}\boldsymbol{B}\right)_{b}\right\rangle \end{split}$$

$$B = \begin{pmatrix} \frac{\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^{+} & p \\ \Sigma^{-} & \frac{-\Sigma^{0}}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n \\ -\Xi^{-} & \Xi^{0} & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}$$

a, b ... Dirac indices of the particles

$$\begin{split} \Gamma_1 = \mathbf{1} \,, \ \Gamma_2 = \gamma^{\mu} \,, \ \Gamma_3 = \sigma^{\mu\nu} \,, \ \Gamma_4 = \gamma^{\mu}\gamma_5 \,, \ \Gamma_5 = \gamma_5 \\ \mathcal{C}_i, \ \tilde{\mathcal{C}}_i \, \dots \text{ low-energy coefficients} \end{split}$$

イロト 不同 トイヨト イヨト

spin-momentum structure of the contact term potential: *BB* contact terms without derivatives (LO):

$$V^{(0)}_{BB 
ightarrow BB} = C_{S,BB 
ightarrow BB} + C_{T,BB 
ightarrow BB} \, ec{\sigma}_1 \cdot ec{\sigma}_2$$

BB contact terms with two derivatives (NLO):

$$\begin{split} V^{(2)}_{BB \to BB} &= C_1 \vec{q}^2 + C_2 \vec{k}^2 + (C_3 \vec{q}^2 + C_4 \vec{k}^2) (\vec{\sigma}_1 \cdot \vec{\sigma}_2) \\ &+ \frac{i}{2} C_5 (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot (\vec{q} \times \vec{k}) + C_6 (\vec{q} \cdot \vec{\sigma}_1) (\vec{q} \cdot \vec{\sigma}_2) \\ &+ C_7 (\vec{k} \cdot \vec{\sigma}_1) (\vec{k} \cdot \vec{\sigma}_2) + \frac{i}{2} C_8 (\vec{\sigma}_1 - \vec{\sigma}_2) \cdot (\vec{q} \times \vec{k}) \end{split}$$

note:  $C_i \rightarrow C_{i,BB \rightarrow BB}$  $\vec{q} = \vec{p}' - \vec{p}; \quad \vec{k} = (\vec{p}' + \vec{p})/2$ 

イロト イポト イヨト イヨト 二日

# SU(3) symmetry

10 independent spin-isospin channels in *NN* and *YN* (for L=0) (*NN* (I=0), *NN* (I=1),  $\land N$ ,  $\Sigma N$  (I=1/2),  $\Sigma N$  (I=3/2),  $\land N \leftrightarrow \Sigma N$ )

 $\Rightarrow$  in principle (at LO), 10 low-energy constants SU(3) symmetry  $\Rightarrow$  only 5 independent low-energy constants

*SU*(3) structure for scattering of two octet baryons: direct product:

 $8 \otimes 8 = 1 \oplus 8_a \oplus 8_s \oplus 10^* \oplus 10 \oplus 27$ 

 $C_{S,i}$ ,  $C_{T,i}$ ,  $C_{1,i}$ , etc., can be expressed by the coefficients corresponding to the  $SU(3)_f$  irreducible representations:  $C^1$ ,  $C^{8_a}$ ,  $C^{8_s}$ ,  $C^{10^*}$ ,  $C^{10}$ ,  $C^{27}$ 

|               | Channel                         |               | V <sub>1S0</sub> , V <sub>3P0,3P1,3P2</sub>  | $V_{3S1}, V_{3S1-3D1}, V_{1P1}$            | <i>V</i> <sub>1<i>P</i>1-3<i>P</i>1</sub> |
|---------------|---------------------------------|---------------|----------------------------------------------|--------------------------------------------|-------------------------------------------|
| <i>S</i> = 0  | $NN \rightarrow NN$             | 0             | -                                            | C <sup>10*</sup>                           | -                                         |
|               | $NN \rightarrow NN$             | 1             | C <sup>27</sup>                              | -                                          | -                                         |
| <i>S</i> = -1 | $\Lambda N \to \Lambda N$       | $\frac{1}{2}$ | $\frac{1}{10} \left(9C^{27} + C^{8s}\right)$ | $\frac{1}{2}(C^{8_a}+C^{10^*})$            | $\frac{-1}{\sqrt{20}}C^{8_{s}8_{a}}$      |
|               | $\Lambda N \to \Sigma N$        | 1<br>2        | $rac{3}{10}\left(-C^{27}+C^{8_{s}} ight)$   | $\frac{1}{2}\left(-C^{8a}+C^{10^*}\right)$ | $\frac{3}{\sqrt{20}}C^{8_s8_a}$           |
|               |                                 |               |                                              |                                            | $\frac{-1}{\sqrt{20}}C^{8_{s}8_{a}}$      |
|               | $\Sigma N \rightarrow \Sigma N$ | $\frac{1}{2}$ | $\frac{1}{10}\left(C^{27}+9C^{8_{s}} ight)$  | $\frac{1}{2}\left(C^{8_a}+C^{10^*} ight)$  | $\frac{3}{\sqrt{20}}C^{8_s 8_a}$          |
|               | $\Sigma N \rightarrow \Sigma N$ | <u>3</u><br>2 | C <sup>27</sup>                              | <i>C</i> <sup>10</sup>                     | -                                         |

#### Number of contact terms:

*NN*: 2 (LO) 7 (NLO) *YN*: +3 (LO) +11 (NLO) *YY*: +1 (LO) + 4 (NLO)  $\Rightarrow C^1$  contributes only to I = 0, S = -2 channels!!

<□> < □> < □> < □> = − ○ < ○

### Pseudoscalar-meson exchange

 $SU(3)_{f}$ -invariant pseudoscalar-meson-baryon interaction Lagrangian:

$$\mathcal{L} = -\left\langle \frac{g_{A}(1-\alpha)}{\sqrt{2}F_{\pi}}\bar{B}\gamma^{\mu}\gamma_{5}\left\{\partial_{\mu}P,B\right\} + \frac{g_{A}\alpha}{\sqrt{2}F_{\pi}}\bar{B}\gamma^{\mu}\gamma_{5}\left[\partial_{\mu}P,B\right]\right\rangle$$

 $f = g_A/(2F_\pi); \ g_A \simeq 1.26, \ F_\pi \approx 93 \text{ MeV}$  $\alpha = F/(F+D) \text{ with } g_A = F+D$ 

$$P = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{-\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$

$$\begin{split} f_{NN\pi} &= f & f_{NN\eta_8} &= \frac{1}{\sqrt{3}} (4\alpha - 1)f & f_{\Lambda NK} &= -\frac{1}{\sqrt{3}} (1 + 2\alpha)f \\ f_{\Xi\Xi\pi} &= -(1 - 2\alpha)f & f_{\Xi\Xi\eta_8} &= -\frac{1}{\sqrt{3}} (1 + 2\alpha)f & f_{\Xi\Lambda K} &= \frac{1}{\sqrt{3}} (4\alpha - 1)f \\ f_{\Lambda\Sigma\pi} &= \frac{2}{\sqrt{3}} (1 - \alpha)f & f_{\Sigma\Sigma\eta_8} &= \frac{2}{\sqrt{3}} (1 - \alpha)f & f_{\Sigma NK} &= (1 - 2\alpha)f \\ f_{\Sigma\Sigma\pi} &= 2\alpha f & f_{\Lambda\Lambda\eta_8} &= -\frac{2}{\sqrt{3}} (1 - \alpha)f & f_{\Xi\Sigma K} &= -f \end{split}$$

# Pseudoscalar-meson (boson) exchange

One-pseudoscalar-meson exchange (V<sup>OBE</sup>) [LO]

$$V_{B_{1}B_{2} \to B_{1}'B_{2}'}^{OBE} = -f_{B_{1}B_{1}'P}f_{B_{2}B_{2}'P}\frac{(\vec{\sigma}_{1} \cdot \vec{q})(\vec{\sigma}_{2} \cdot \vec{q})}{\vec{q}^{2} + m_{P}^{2}}$$

 $f_{B_1B'_1P}$  ... coupling constants  $m_P$  ... mass of the exchanged pseudoscalar meson

• dynamical breaking of SU(3) symmetry due to the mass splitting of the ps mesons  $(m_{\pi} = 138.0 \text{ MeV}, m_{K} = 495.7 \text{ MeV}, m_{\eta} = 547.3 \text{ MeV})$ taken into account already at LO!

#### Details:

(H. Polinder, J.H., U.-G. Meißner, NPA 779 (2006) 244; PLB 653 (2007) 29)

イロト イポト イヨト イヨト 一日

## Two-pseudoscalar-meson exchange diagrams

Two-pseudoscalar-meson exchange diagrams ( $V^{TBE}$ ) [NLO]



⇒ J.H., S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24

# Coupled channels Lippmann-Schwinger Equation

$$T_{\rho'\rho}{}^{\nu'\nu,J}(p',p) = V_{\rho'\rho}{}^{\nu'\nu,J}(p',p) + \sum_{\rho'',\nu''} \int_0^\infty \frac{dp''p''^2}{(2\pi)^3} V_{\rho'\rho''}{}^{\nu'\nu'',J}(p',p'') \frac{2\mu_{\nu''}}{p^2 - p''^2 + i\eta} T_{\rho''\rho}{}^{\nu''\nu,J}(p'',p)$$

 $\rho',\ \rho=\Lambda N,\, \Sigma N$ 

LS equation is solved for particle channels (in momentum space) Coulomb interaction is included via the Vincent-Phatak method The potential in the LS equation is cut off with the regulator function:

$$V_{
ho'
ho}{}^{
u'
u,J}(
ho',
ho) o f^{\wedge}(
ho') V_{
ho'
ho}{}^{
u'
u,J}(
ho',
ho) f^{\wedge}(
ho); \quad f^{\wedge}(
ho) = e^{-(
ho/\Lambda)^4}$$

consider values A = 450 - 700 MeV [500 - 650 MeV]

(過) (ヨ) (ヨ)

# **NLO** Results

Pseudoscalar-meson exchange

- All one- and two-pseudoscalar-meson exchange diagrams are included
- *SU*(3) symmetry is broken by using the physical masses of the pion, kaon, and eta
- *SU*(3) breaking in the coupling constants is ignored  $F_{\pi} = F_{K} = F_{\eta} = F_{0} = 93$  MeV;  $g_{A} = 1.26$
- assume that  $\eta \equiv \eta_8$  (i.e.  $\theta_P = 0^o$  and  $f_{BB\eta_1} \equiv 0$ )
- assume that α = F/(F + D) = 2/5 (semi-leptonic decays ⇒ α ≈ 0.364)
- Correction to V<sup>OBE</sup> due to baryon mass differences are ignored
- (A fit with two-pion-meson exchange diagrams is possible!)
- (A fit with physical values for  $F_{\pi}$ ,  $F_{K}$ ,  $F_{\eta}$  is possible!)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- SU(3) symmetry is assumed
- (at NLO SU(3) breaking corrections to the LO contact terms arise!)
- 10 contact terms in S-waves no SU(3) constraints from the NN sector are imposed!
- 12 contact terms in *P*-waves and in <sup>3</sup>S<sub>1</sub> <sup>3</sup>D<sub>1</sub>
   SU(3) constraints from the *NN* sector are imposed!
- 1 contact term in  ${}^{1}P_{1} {}^{3}P_{1}$  (singlet-triplet mixing) is set to zero

- contact terms in S-waves: can be fairly well fixed from data
- some correlations between NLO and LO LECs

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

# Contact terms (old - new)



# Contact terms (old - new)



イロト イポト イヨト イヨト

### Contact terms in P-waves

- contact terms in P-waves are much less constrained
- use SU(3) and fix some (5) LECs from NN
- the others (7) are fixed from "bulk" properties:

(1)  $\sigma_{\Lambda p} \approx 10 \text{ mb}$  at  $p_{lab} \approx 700 - 900 \text{ MeV/c}$ 

(2)  $d\sigma/d\Omega_{\Sigma^- p \to \Lambda n}$  at  $p_{lab} \approx 135 - 160$  MeV/c

#### Other (future) options:

• consider matter properties:

use spin-orbit splitting of the A single particle levels in nuclei

Consider the Scheerbaum factor  $S_{\Lambda}$  calculated in nuclear matter to relate the strength of the  $\Lambda$ -nucleus spin-orbit potential to the two body  $\Lambda N$  interaction

(R.R. Scheerbaum, NPA 257 (1976) 77)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つくぐ

# *N* integrated cross sections



イロン イ団ン イヨン イヨン

æ

# *N* integrated cross sections



ヘロト 人間 とく ヨン 人 ヨトー

æ

# $\Sigma^+ p$ integrated cross section - new vs. old



イロト 不得 とくほと くほとう

### *N* integrated cross sections - higher energies





イロン 不得 とくほ とくほ とうほ

800

 $\Lambda p \rightarrow \Sigma^0 p$ 

Johann Haidenbauer Hyperon-nucleon interaction

### *N* integrated cross sections - higher energies



イロト 不得 とくほと くほとう

|                                         | EFT LO            | EFT NLO           | Jülich '04   | NSC97f | experiment           |
|-----------------------------------------|-------------------|-------------------|--------------|--------|----------------------|
| ۸ [MeV]                                 | 550 • • • 700     | 500 • • • 650     |              |        |                      |
| $a_s^{\Lambda p}$                       | -1.90 • • • -1.91 | -2.90 · · · -2.91 | -2.56        | -2.51  | $-1.8^{+2.3}_{-4.2}$ |
| $a_t^{\Lambda p}$                       | -1.22 · · · -1.23 | -1.51 ••• -1.61   | -1.66        | -1.75  | $-1.6^{+1.1}_{-0.8}$ |
| a <sub>s</sub> <sup>Σ+ρ</sup>           | -2.24 • • • -2.36 | -3.46 • • • -3.60 | -4.71        | -4.35  |                      |
| $a_t^{\Sigma^+ p}$                      | 0.60 · · · 0.70   | 0.48 · · · 0.49   | 0.29         | -0.25  |                      |
| $\chi^2$                                | pprox 30          | 15.7 • • • 16.8   | $\approx 25$ | 16.7   |                      |
| $\binom{3}{\Lambda}$ H) $E_B^{\dagger}$ | -2.34 · · · -2.36 | -2.302.33         | -2.27        | -2.30  | -2.354(50)           |

イロン イロン イヨン イヨン

æ

## Nuclear matter properties

conventional first-order Brueckner calculation:

Partial wave contributions to  $-U_{\Lambda}(p_{\Lambda}=0)$  (in MeV) at  $k_F = 1.35 \text{ fm}^{-1}$ 

|            | ${}^{1}S_{0}$ | ${}^{3}S_{1} + {}^{3}D_{1}$ | <sup>3</sup> P <sub>0</sub> | ${}^{1}P_{1} + {}^{3}P_{1}$ | ${}^{3}P_{2} + {}^{3}F_{2}$ | Total |
|------------|---------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------|
| EFT LO     | 12.0          | 25.5                        | 1.7                         | -3.3                        | 0.4                         | 36.5  |
| EFT NLO    | 12.5          | 12.0                        | -0.9                        | -2.1                        | 1.1                         | 22.9  |
| Jülich '04 | 9.9           | 35.0                        | 0.7                         | 0.2                         | 3.3                         | 49.7  |
| Jülich '94 | 3.6           | 27.2                        | -0.6                        | -2.0                        | 0.8                         | 29.8  |
| NSC97f     | 14.4          | 22.9                        | -0.5                        | -6.4                        | 0.7                         | 31.1  |

"Empirical" value for the  $\Lambda$  binding energy in nuclear matter:  $\approx 30 \text{ MeV}$ 

3

|                            | EFT LO            | EFT NLO           | Jülich '04 | Jülich '94 | NSC97f |
|----------------------------|-------------------|-------------------|------------|------------|--------|
| ۸ [MeV]                    | 550 · · · 700     | 500 · · · 650     |            |            |        |
| <i>−U</i> ∧(0)             | 38.0 · · · 34.4   | 29.3 • • • 22.9   | 49.7       | 29.8       | 31.1   |
| <i>−U</i> <sub>Σ</sub> (0) | -28.0 • • • -11.1 | -17.4 · · · -12.1 | 22.2       | 71.45      | 16.1   |

・ロト ・聞 と ・ ヨ と ・ ヨ と

æ



- · singlet scattering length for one cutoff chosen so that hypertriton binding energy is OK
- cutoff variation
  - · is lower bound for magnitude of higher order contributions
  - correlation with χ<sup>2</sup> of YN interaction ?
- · long range 3BFs need to be explicitly estimated



# *p* S-wave phase shifts



 $\Rightarrow$  less repulsion in <sup>1</sup>S<sub>0</sub> at short distances – and/or 3BFs ?

★ E → ★ E →

### CSB at NLO & for model interactions



Contributions to the difference of  ${}^4_{\Lambda}{
m H}\left(0^+
ight)-{}^4_{\Lambda}{
m He}\left(0^+
ight)$  separation energies

| ∧ [MeV]                   | 450  | 500  | 550  | 600  | 650  | 700  | Jülich<br>04 | Nijm<br>SC97 | Nijm<br>SC89 | Expt. |
|---------------------------|------|------|------|------|------|------|--------------|--------------|--------------|-------|
| ΔT [keV]                  | 44   | 50   | 52   | 51   | 46   | 40   | 0            | 47           | 132          | -     |
| ΔV <sub>NN</sub> [keV]    | -3   | -2   | 5    | 5    | 3    | 0    | -31          | -9           | -9           | -     |
| $\Delta V_{\rm YN}$ [keV] | -11  | -11  | -11  | -10  | -8   | -7   | 2            | 37           | 228          | -     |
| tot [keV]                 | 30   | 37   | 46   | 46   | 41   | 33   | -29          | 75           | 351          | 350   |
| Ρ <sub>Σ-</sub>           | 1.0% | 1.1% | 1.2% | 1.2% | 1.1% | 0.9% | 0.3%         | 1.0%         | 2.7%         | -     |
| $P_{\Sigma 0}$            | 0.6% | 0.6% | 0.7% | 0.7% | 0.6% | 0.5% | 0.3%         | 0.5%         | 1.4%         | -     |
| Ρ <sub>Σ+</sub>           | 0.1% | 0.1% | 0.2% | 0.2% | 0.2% | 0.1% | 0.3%         | 0.0%         | 0.1%         | -     |

- kinetic energy contribution is driven by Σ component
- NN force contribution due to small deviation of Coulomb
- YN force contribution:
  - SC89 CSB is strong
  - NLO CSB is zero, only Coulomb acts (Σ component)

# $\Lambda - \Sigma^0$ mixing



#### Electromagnetic mass matrix:

$$\langle \Sigma^{0} | \delta M | \Lambda \rangle = [M_{\Sigma^{0}} - M_{\Sigma^{+}} + M_{\rho} - M_{n}] / \sqrt{3} \langle \pi^{0} | \delta m^{2} | \eta \rangle = [m_{\pi^{0}}^{2} - m_{\pi^{+}}^{2} + m_{K^{+}}^{2} - m_{K^{0}}^{2}] / \sqrt{3}$$

(R.H. Dalitz & F. von Hippel, PL 10 (1964) 153)

→ < ≥ > < ≥ >

< 🗇

# $\Lambda - \Sigma^0$ mixing

$$f_{\Lambda\Lambda\pi} = [-2rac{\langle \Sigma^0 | \delta M | \Lambda 
angle}{M_{\Sigma^0} - M_{\Lambda}} + rac{\langle \pi^0 | \delta m^2 | \eta 
angle}{m_\eta^2 - m_{\pi^0}^2}] f_{\Lambda\Sigma\pi}$$

latest PDG mass values  $\Rightarrow$  $f_{\Lambda\Lambda\pi} \approx (-0.0297 - 0.0106) f_{\Lambda\Sigma\pi} \approx -0.0403 f_{\Lambda\Sigma\pi}$ 

### Scattering lengths (in fm)

|               |                             | Isospin | particle      |        | +CSB   |        |
|---------------|-----------------------------|---------|---------------|--------|--------|--------|
|               |                             | basis   | basis         |        |        |        |
|               |                             | ٨N      | ٨p            | ∧р ∧п  |        | ۸n     |
| EFT NLO (600) | <sup>1</sup> S <sub>0</sub> | -2.902  | -2.906 -2.907 |        | -2.866 | -2.948 |
| NSC97f        |                             | -1.60   |               |        | -2.51  | -2.68  |
| EFT NLO (600) | <sup>3</sup> S <sub>1</sub> | -1.520  | -1.541        | -1.517 | -1.547 | -1.512 |
| NSC97f        |                             | -1.72   |               |        | -1.75  | -1.66  |

イロト イポト イヨト イヨト

YN interaction based on chiral EFT

- approach is based on a modified Weinberg power counting, analogous to the *NN* case
- The potential (contact terms, pseudoscalar-meson exchanges) is derived imposing SU(3)<sub>f</sub> constraints
- Good description of the empirical YN data was achieved already at LO (only 5 free parameters!)
- Excellent results at next-to-leading order (NLO)
- YN data are reproduced with a quality comparable to phenomenological models
- SU(3) symmetry for the LEC's can be maintained in the YN system ( $\Lambda N$ ,  $\Sigma N$ ) but not between YN and NN

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

# Outlook

### Extension to N2LO

- same number of LECs that need to be determined
- employ spectral-function regularization like in the NN case
- in *NN*: cutoff  $\tilde{\Lambda} \approx 500-700$  MeV, i.e.

 $\Lambda \leq m_{\pi} + m_{K}, m_{\pi} + m_{\eta}, ...$ 

 $\Rightarrow$  should keep only  $\pi\pi$  loops !

systematic investigation of YNN and YNNN systems

- binding energies are influenced by:
  - (1) relative strength of the  $\Lambda N^{1}S_{0}$  and  $^{3}S_{1}$  interactions
  - (2) strength of the  $\Lambda N \Sigma N$  coupling  $({}^{3}S_{1} {}^{3}D_{1})$
  - (3) possible three-body forces (beyond intermediate Σ) (appear formally at N2LO!)

イロン 不得 とくほ とくほう 一日