KAONIC DEUTERIUM theory status report

V.Baru, E.Epelbaum, <u>M.Mai</u>, A.Rusetsky

$\bar{K}N$ scattering lengths

- Fundamental quantities to test our understanding of the low energy SU(3) meson-baryon dynamics
- Experiment at $DA\Phi NE$:
 - SIDDHARTA: energy shift and width of the 1s level for kaonic hydrogen
 - \rightarrow extract a_{K^-p} from modified Deser-type formula

Meißner, Raha, Rusetsky (2004)

..., which does <u>not</u> determine $\{a_I | I = 0, 1\}$

 \rightarrow use as an (additional) input for chiral unitary models to predict a_0 and a_1

Ikeda, Hyodo, Weise (2012) Mai, Meißner (2012)

$\bar{K}N$ scattering lengths

- Experiments at $DA\Phi NE$:
 - SIDDHARTA: energy shift and width of the 1s level for kaonic hydrogen
 - SIDDHARTA-2 (under preparation): 1s level transition of kaonic deuterium
- Extraction of the antikaon-nucleon scattering lengths:
 - 1) threshold scattering amplitudes a_{K^-p} and A_{K^-d} via modified Deser-type formula
 - Meißner, Raha, Rusetsky (2006) 2) relate a_{K^-p} and A_{K^-d} to the S-wave $\bar{K}N$ scattering lengths

$\bar{K}d$ scattering

- Three-body Faddeev equation:
 - allows for an analysis of $\bar{K}NN$ system
 - requires knowledge of the NN as well as KN potential \Rightarrow no explicit relation btw. A_{K^-d} and a_I
- Multiple-scattering series

Kamalov, Oset, Ramos (2001)

- poor convergence of the expansion
- resummation of the series $\hat{=}$ fixed-center-approximation (FCA) of Faddeev Equations $(m_N \to \infty) \Rightarrow Brueckner-type formula:$

$$R_{K^{-d}} \propto \int d^3 r \Psi^2(r) \frac{\tilde{a}_p + \tilde{a}_n + (2\tilde{a}_p \tilde{a}_n - b_x^2)/r - 2b_x^2 \tilde{a}_n/r^2}{1 - \tilde{a}_p \tilde{a}_n/r^2 + b_x^2 \tilde{a}_n/r^3}$$

$$\begin{split} \tilde{a}_i &= (1 + \frac{M_K}{m_N}), \, b_x := \tilde{a}_x / \sqrt{1 + \tilde{a}_0 / r} \\ a_x &:= a_{K^- p \to \bar{K}^0 n}, \, a_p := a_{K^- p \to \bar{K}^- p}, \, a_0 := a_{\bar{K}^0 n \to \bar{K}^0 n}, \\ a_n &:= a_{K^- n \to K^- n} \end{split}$$

Recoil corrections

- $\Lambda(1405)$ located close to the threshold \Rightarrow higher terms in effective-range expansion (?)
- $\xi := M_K/m_N \approx 0.5 \neq 0 \Rightarrow$ consider recoil corrections

Baru, Epelbaum, Rusetsky (2009)

- systematic calculation of corrections for double scattering
- non-relativistic framework
- systematic expansion in powers of ξ (actually $\sqrt{\xi} \sim 0.7$)
- one retardation insertion yields a change of $\sim 15\%$
- \Rightarrow Our goal:
 - extend this framework to multiple scattering diagrams
 - estimate the size of recoil corrections in multiple scattering
 - estimate convergence in parameter ξ

Idea

• assume a single interaction channel, specified by scattering length *a*, then

$$\begin{split} R_{K^-d} &= a + a^2 D + a^3 D^2 + \ldots = a + a^2 (\tilde{D} + \frac{1}{r}) + a^3 (\tilde{D} + \frac{1}{r})^2 + \ldots \\ &= a + \frac{a^2}{r} + \frac{a^3}{r^2} + \ldots + (a^2 + 2\frac{a^3}{r} + \ldots) \tilde{D} + (a^3 + \ldots) \tilde{D}^2 + \ldots \\ &= R_{st} + R^{(1)} + R^{(2)} + \ldots, \end{split}$$

where D and $\tilde{D} := D - \frac{1}{r}$ are the full and retarded kaon propagators.

 \Rightarrow in the realistic case, <u>for one retardation</u> we have to compute:

$$R^{(1)} = \underbrace{\mathbf{W}}_{\mathbf{W}} + \underbrace{\mathbf{W}}_{\mathbf{$$

One retardation

• after some combinatorial analysis...

$$\begin{aligned} \mathbf{k}_{st} &= \frac{1}{8\pi} \int d^3 r \Psi(r)^2 X_{NN}(r) \\ \mathbf{k}_{0/1} &= \frac{1}{2} \frac{\xi}{(1+\xi)} \int \frac{d^3 p \, d^3 l}{(2\pi)^6} \frac{1}{l^2} \frac{l^2/2 - b_p^2}{l^2(1+\xi/2) + \xi b_p^2} \Phi_{\pm}(p,l) \\ \mathbf{k}_{NN} &= \frac{\xi}{4m_N} \int \frac{d^3 p \, d^3 l \, d^3 q}{(2\pi)^9} \frac{M_{NN}(p,q,l) \Phi_{NN}(p,q,l)}{(l^2(1+\xi/2) + b_p^2 \xi)(l^2(1+\xi/2) + b_q^2 \xi)} \\ \mathbf{k}_{0/1} &= (\pm) \frac{\xi}{1+\xi} \frac{1}{8\pi} \int d^3 r \frac{1}{r} (\Psi(r) X_{\pm}(r))^2 \end{aligned}$$

...with

•
$$A_i = \frac{8\pi}{1+\xi/2}R_i$$

• $b_p^2 := 2(p^2 + m_N \epsilon_d)$

•
$$X_{NN}(r) = \sqrt{2}X_+(r) = \frac{r(\tilde{a_0}(4\tilde{a_1}+r)+3\tilde{a_1}r)}{\tilde{a_0}(r-2\tilde{a_1})+r(2r-\tilde{a_1})}$$

•
$$X_{-}(r) = \frac{\sqrt{6}(\tilde{a}_{0} - \tilde{a}_{1})r^{2}}{\tilde{a}_{0}(4\tilde{a}_{1} - 2r) + 2(\tilde{a}_{1} - 2r)r}$$

•
$$\Phi_{\pm}(p,l) = \widetilde{X_{\pm}\Psi}(p+l/2) \left(\widetilde{X_{\pm}\Psi}(p+l/2) \pm \widetilde{X_{\pm}\Psi}(p-l/2) \right)$$

•
$$\Phi_{NN}(p,q,l) = \widetilde{X_{NN}\Psi}(p+l/2)\widetilde{X_{NN}\Psi}(q+l/2)$$

•
$$\widetilde{X_i}\Psi(P) := \int d^3r X_i(r)\Psi(r) e^{iPr}$$

•
$$M_{NN}(p,q,l) = V(p,q) + \frac{1}{4m_N} \int \frac{d^3p'}{(2\pi)^3} \frac{V_{(p,p')}M_{NN}(p',q,l)}{p'^2 + m_n\epsilon_d + l^2(\frac{1+\xi/2}{2\xi})}$$

One retardation - full contribution

• Compare to the outcome of Faddeev equations (FE) Shevchenko (2012)

• for $a_1 = -1.62 + i0.78$ fm, $a_0 = 0.18 + i0.68$ fm

	PEST	TSA-A	TSA-B
	Zankel et al. (1983)	Doleschall	Doleschall
A_{st}	-1.549 + i1.245	-1.515 + i1.207	-1.503 + i1.194
ΔA_0^{st}	-0.111 + i0.344	-0.115 + i0.335	-0.116 + i0.334
ΔA_1^{st}	+0.128 - i0.219	+0.123 - i0.206	+0.119 - i0.201
A_0	-0.287 + i0.954	-0.274 + i0.890	-0.275 + i0.877
A_1	-0.125 + i0.173	-0.123 + i0.156	-0.120 + i0.149
A_{NN}	+0.364 - i1.208	+0.362 - i1.118	+0.365 - i1.097
A_{full}	-1.579 + i1.289	-1.541 + i1.265	-1.530 + i1.256
FE	-1.580 + i1.130	-1.570 + i1.100	-1.570 + i1.110

One retardation - full contribution

▶ ... and for $a_1 = -1.60 + i0.67$ fm, $a_0 = -0.004 + i0.57$ fm

	PEST	TSA-A	TSA-B
	Zankel et al. (1983)	Doleschall	Doleschall
A_{st}	-1.485 + i1.078	-1.450 + i1.047	-1.437 + i1.037
ΔA_0^{st}	-0.103 + i0.288	-0.105 + i0.282	-0.105 + i0.281
ΔA_1^{st}	+0.068 - i0.217	+0.066 - i0.202	+0.062 - i0.197
A_0	-0.277 + i0.700	-0.264 + i0.747	-0.261 + i0.737
A_1	-0.076 + i0.168	-0.080 + i0.150	-0.077 + i0.143
A_{NN}	+0.352 - i1.006	+0.341 - i0.933	+0.338 - i0.917
A_{full}	-1.521 + i1.111	-1.491 + i1.090	-1.479 + i1.084
FE	-1.510 + i0.990	-1.500 + i0.970	-1.490 + i0.980

Good news: Real part is closer to FE results after an insertion of one retardation

Unclear: Imaginary part moves further away

Expansion in powers of ξ

• recipe worked out for arbitrary Feynman diagrams:

Baru, Epelbaum, Rusetsky (2009)

- 1) Identify the momentum scales, e.g. small scale λ , large scale Λ .
- 2) Expand the integrand $f(\lambda, q, \Lambda)$ in the low-, high- and intermediate momentum regime, i.e $\lambda \sim q \ll \Lambda$, $\lambda \ll q \sim \Lambda$ and $\lambda \ll q \ll \Lambda$.
- 3) $\int_q f(\lambda, q, \Lambda) = \int_q f_l(\lambda, q, \Lambda) \int_q f_i(\lambda, q, \Lambda) + \int_q f_h(\lambda, q, \Lambda).$
- take a look on $R_{0/1}$:

$$\begin{split} R_{0/1} &= \frac{1}{2} \frac{\xi}{(1+\xi)} \int \frac{d^3 p \, d^3 l}{(2\pi)^6} \frac{1}{l^2} \frac{l^2/2 - b_p^2}{l^2(1+\xi/2) + \xi b_p^2} \Phi_{\pm}(p,l) \\ &= \frac{\xi}{2(2+\xi)} \int \frac{d^3 p \, d^3 q}{(2\pi)^6} \frac{1}{l^2} \Big(\frac{1}{1+\xi} - \frac{2b_p^2}{l^2(1+\xi/2) + \xi b_p^2} \Big) \Phi_{\pm}(p,l) \\ &= \frac{\xi}{(1+\xi)(2+\xi)} J_0 - \frac{\xi}{(1+\xi/2)^2} T_{1/0} \end{split}$$

Expansion in powers of ξ

- low-momentum: $T_{\pm}^{l} = \int \frac{d^{3}pd^{3}q}{(2\pi)^{6}} \frac{b^{2}}{l^{2}} \left(\Phi_{0}^{\pm} + \Phi_{2}^{\pm}l^{2} + \Phi_{4}^{\pm}l^{4} + ...\right) \frac{1}{l^{2} + \xi \tilde{b}^{2}}$
- high-momentum: $T^h_{\pm} = \int \frac{d^3p d^3q}{(2\pi)^6} \frac{b^2}{l^2} \Phi_{\pm}(p,l) \left(1 \frac{\xi \tilde{b}^2}{l^2} + \frac{\xi^2 \tilde{b}^4}{l^4} + \ldots\right)$
- intermediate: $T^i_{\pm} = \int \frac{d^3 p d^3 q}{(2\pi)^6} \frac{b^2}{l^2} \left(\Phi^{\pm}_0 + \Phi^{\pm}_2 l^2 + \Phi^{\pm}_4 l^4 + .. \right) \left(1 \frac{\xi \tilde{b}^2}{l^2} + \frac{\xi^2 \tilde{b}^4}{l^4} + .. \right)$

for
$$\tilde{b}^2 = b^2/(1+\xi/2), \ \tilde{\xi} = \xi/(1+\xi/2)$$
 and $\Phi_{2n}^{\pm} = \frac{1}{(2n+1)2n!} \Delta_l^n \Phi_{\pm}(p,l) \Big|_{l=0}$

$$R_{0} = \frac{2}{1+\xi}\tilde{\xi}\tilde{J}_{0} - \frac{2}{2+\xi} \left(\tilde{\xi}\tilde{c}_{0} - \tilde{\xi}^{2}\tilde{c}_{1} + \tilde{\xi}^{3}\tilde{c}_{2} + \dots + \tilde{\xi}^{1/2}\tilde{b}_{-1} - \tilde{\xi}^{3/2}\tilde{b}_{0} + \tilde{\xi}^{5/2}\tilde{b}_{1} - \dots\right)$$

$$R_{1} = \frac{2}{1+\xi}\tilde{\xi}J_{0} - \frac{2}{2+\xi} \left(\tilde{\xi}c_{0} - \tilde{\xi}^{2}c_{1} + \tilde{\xi}^{3}c_{2} + \dots + -\tilde{\xi}^{3/2}b_{0} + \tilde{\xi}^{5/2}b_{1} - \dots\right)$$

Results of the ξ **-expansion:** R_1

Results of the ξ **-expansion:** R_0

Results of the ξ -expansion: R_{NN}

•
$$R_{NN} = \frac{1}{1+\xi/2} \Big(\tilde{\xi} C_1 + \tilde{\xi}^2 C_2 + \dots + \tilde{\xi}^{1/2} B_1 + \tilde{\xi}^{3/2} B_2 + \dots \Big)$$

Good news: R_0 , R_1 , R_{NN} converge after a few orders of ξ

- with ξ as an expansion parameter more orders are required
- R_{NN} and R_0 cancel at order $\xi^{1/2}$ to a large amount

Puzzling: the leading order corrections in ξ are large, but the full correction of one retardation is small compared to the static part.

Conclusion

Done:

- one-retarded block inserted into multiple scattering diagrams
- integrals are carried out and computed for various "realistic" NN potentials
 - + Real part is closer to the result of FE after an insertion of one retardation
 - Imaginary part is further off this result compared to static part
- expansion of all contributions in $\xi = M_K/m_N$ is performed
 - + Separate contributions converge to the full result
 - Large cancellations between first orders in $\tilde{\xi}$
- In preparation:
 - ! Estimate the size of the double insertion !

THANK YOU FOR YOUR ATTENTION!

SPARES (R_0 coefficients)

•
$$\tilde{J}_{0} = \frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{d^{3}l}{(2\pi)^{3}} \frac{1}{l^{2}} \Phi^{+}(p,l) = \tilde{c}_{-1}, \ \tilde{b}_{n} = \frac{1}{2(2\pi)^{3}} \int dp \ p^{2} b^{3+2n} \Phi^{+}_{2n+2}$$

• $\tilde{c}_{0} = \frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{d^{3}l}{(2\pi)^{3}} \frac{b^{2}}{l^{4}} \Phi^{+}(p,l)$
 $\tilde{c}_{1} = \frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{d^{3}l}{(2\pi)^{3}} \frac{b^{4}}{l^{6}} (\Phi^{+}(p,l) - l^{2} \Phi^{+}_{2}) \dots$
 $\tilde{c}_{1} = \tilde{c}_{1} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{d^{3}l}{(2\pi)^{3}} \frac{b^{4}}{l^{6}} (\Phi^{+}(p,l) - l^{2} \Phi^{+}_{2}) \dots$

$$\begin{split} \tilde{c}_{n-1}^{aim.reg.} &= \int \frac{x}{(2\pi)^3} \frac{\varphi}{(2\pi)^3} \frac{\varphi}{l^{2(n+1)}} \Phi^+(p,l) \\ &= \frac{1}{2^{n+1}\sqrt{\pi}} \sum_{m=0}^n \sum_{k=0}^m \sum_{q=0}^k \binom{n}{m} \binom{m}{k} \binom{k}{q} (-1)^{n-m-k} \frac{\Gamma(-m-1+3/2)}{\Gamma(m+1)} \gamma^{2n-2k} 2^{-k} \times \\ &\times \int dr r^{2m+1} \left(\Delta_r^q X_+(r) \Psi(r) \right) \left(\Delta_r^{k-q} X_+(r) \Psi(r) \right) \end{split}$$

SPARES (R_1 coefficients)

•
$$J_{0} = \frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{d^{3}l}{(2\pi)^{3}} \frac{1}{l^{2}} \Phi^{-}(p,l) = c_{-1}, \ b_{n} = -\frac{1}{2} \frac{1}{(2\pi)^{3}} \int dp \ p^{2} b^{3+2n} \Phi_{2n+2}^{-}$$

• $c_{0} = \frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{d^{3}l}{(2\pi)^{3}} \frac{b^{2}}{l^{4}} \Phi^{-}(p,l)$
 $c_{1} = \frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{d^{3}l}{(2\pi)^{3}} \frac{b^{4}}{l^{6}} (\Phi^{-}(p,l) - l^{2} \Phi_{2}^{-}) \dots$

$$\begin{split} c_{n-1}^{\dim.reg.} &= \int \frac{d^3p}{(2\pi)^3} \frac{d^3l}{(2\pi)^3} \frac{b^{2n}}{l^{2(n+1)}} \Phi^-(p,l) \\ &= -\frac{\sqrt{\pi}}{2^n} \sum_{m=0}^n \sum_{k=0}^m \sum_{q=0}^k \binom{n}{m} \binom{m}{k} \binom{k}{q} (-1)^{n-m-k} \frac{\Gamma(-m-1+3/2)}{\Gamma(m+1)} \gamma^{2n-2k} 2^{-k} \times \\ &\times \int dr r^{2m+1} \left(\Delta_r^q X_-(r) \Psi(r) \right) \left(\Delta_r^{k-q} X_-(r) \Psi(r) \right) \end{split}$$

$$\Rightarrow \ \ b_0 = (-1.307530 + i\,0.638492) \ \ \mathrm{GeV}^{-1} \ \ c_0 = (+0.773933 - i\,0.372541) \ \ \mathrm{GeV}^{-1} \\ \ b_1 = (+0.032291 + i\,0.049485) \ \ \mathrm{GeV}^{-1} \ \ c_1 = (+0.317277 - i\,0.124332) \ \ \mathrm{GeV}^{-1} \\ \ b_2 = (-0.497011 + i\,0.236824) \ \ \mathrm{GeV}^{-1} \ \ c_2 = (-0.596553 + i\,0.249037) \ \ \mathrm{GeV}^{-1} \\ \ J_0 = (-0.328491 + i\,0.193019) \ \ \mathrm{GeV}^{-1} \ \ c_3 = (-0.170478 + i\,0.065114) \ \ \mathrm{GeV}^{-1}$$

SPARES (R_{NN} coefficients)

$$\begin{split} B_1 &= (+0.88083 - i\, 2.96966) \text{GeV}^{-1} \quad C_1 &= (-0.44499 + i\, 0.64918) \text{GeV}^{-1} \\ B_2 &= (-0.14990 + i\, 1.03120) \text{GeV}^{-1} \quad C_2 &= (+0.53600 - i\, 1.25200) \text{GeV}^{-1} \end{split}$$

• CHECK - without resummation $(X_+ = 1)$: $2B_1 = \tilde{b}_{-1} = 0.0231$. Full cancellation of R_{NN} and R_0 at order $\xi^{1/2}$.

SPARES (R_0 strict expansion in ξ)

SPARES (Convergence of the ξ -expansion)

